phân tích đa thức sau thành nhân tử: x^2-8x-9
8x ( x^2 - 9 ) = 0 tìm x phân tích đa thức thành nhân tử
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
\(8x\left(x^2-9\right)=0\Rightarrow8x\left(x-3\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
phân tích các đa thức sau thành nhân tử x^4 -4x^3-8x^2+8x
x4 - 4x3 - 8x2 + 8x
= x(x3 - 4x2 - 8x + 8)
= x[x3 + 8 - 4x(x + 2)]
= x[(x + 2)(x2 - 2x + 4) - 4x(x + 2)]
= x(x + 2)(x2 - 6x + 4)
= x(x + 2)(x2 - 6x + 9 - 5)
= \(x\left(x+2\right)\left[\left(x-3\right)^2-5\right]=x\left(x+2\right)\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)\)
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x^3-6x^2+2x^2+4x-12x+8\right)\)
\(=x\left[\left(x^3-6x^2+4x\right)+\left(2x^2-12x+8\right)\right]\)
\(=x\left[x\left(x^2-6x+4\right)+2\left(x^2-6x+4\right)\right]\)
\(=x\left(x^2-6x+4\right)\left(x+2\right)\)
\(=x\left[\left(x-3\right)^2-\left(\sqrt{5}\right)^2\right]\left(x+2\right)\)
\(=x\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\left(x+2\right)\)
Phân tích các đa thức thành nhân tử
a, 8x+4x^2-12xy
b, 5x^3-10x^2+5x
c, x^3+x^2y-xy^2-y^3
d, x^2-8x-9
a) Ta có: \(8x+4x^2-12xy\)
\(=4x\left(2+x-3y\right)\)
b) Ta có: \(5x^3-10x^2+5x\)
\(=5x\left(x^2-2x+1\right)\)
\(=5x\left(x-1\right)^2\)
c) Ta có: \(x^3+x^2y-xy^2-y^3\)
\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
d) Ta có: \(x^2-8x-9\)
\(=x^2-9x+x-9\)
\(=\left(x-9\right)\left(x+1\right)\)
a. `8x+4x^2-12xy=4x(2+x-3y)`
b) `5x^3-10x^2+5x=5x(x^2-2x+1)`
c) `x^3+x^2y-xy^2-y^3=x^2(x+y)-y^2(x+y)=(x+y)(x^2-y^2)=(x+y)^2 (x-y)`
d) `x^2-8x-9=(x^2-2.x.4+4^2)-25=(x-4)^2-5^2=(x+1)(x-9)`
Bài 1. Phân tích đa thức sau thành nhân tử
\(x^4-8x\)
\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)
x4 - 8x = x.(x3 - 8) = x. (x3 - 23) = x.(x - 2).(x2 + 2x +4)
`x^4 - 8x`
`= x(x^3 - 8)`
`= x(x - 2)(x^2 + 2x + 4)`
Phân tích đa thức sau thành nhân tử: f(x) = x^4 + 8x^3 + 28x^2 + 48x - 13
\(x^4+8x^3+28x^2+48x-13\)
\(=x^4+4x^3+13x^2+4x^3+16x^2+52x-x^2-4x-13\)
\(=x^2\left(x^2+4x+13\right)+4x\left(x^2+4x+13\right)-\left(x^2+4x+13\right)\)
\(=\left(x^2+4x-1\right)\left(x^2+4x+13\right)\)
Phân tích đa thức sau thành nhân tử
x^4-8x^3+11x^2+8x-12
= \(x^4-2x^3-6x^3+12x^2-x^2+2x+6x-12\)
= \(x^3\left(x-2\right)-6x^2\left(x-2\right)-x\left(x-2\right)+6\left(x-2\right)\)
= \(\left(x-2\right)\left(x^3-6x^2-x+6\right)\)
= \(\left(x-2\right)\left(x^2\left(x-6\right)-\left(x-6\right)\right)\)
= \(\left(x-2\right)\left(x-6\right)\left(x-1\right)\left(x+1\right)\)
x4 - 8x3 + 11x2 + 8x - 12
= (x3 - 7x2 + 4x + 12)(x - 1)
= (x3 - 8x + 12)(x + 1)(x - 1)
= (x - 6)(x - 2)(x + 1)(x - 1)
(x^2+8x+7)(x^2+8x+15)+15
hãy phân tích đa thức trên thành nhân tử:
( x2 + 8x + 7 ) ( x2 + 8x + 15 ) + 15
Đặt x2 + 8x + 7 = y ta có:
y ( y + 8 ) + 15
= y2 + 8y + 15
= ( y + 3 ) ( y + 5 )
= ( x2 + 8x + 10 ) ( x2 + 8x + 12 )
= ( x2 + 8x + 10 ) ( x + 2 ) ( x + 6 )
Đặt x2 + 8x + 7 = y ta có:
y ( y + 8 ) + 15
= y2 + 8y + 15
= ( y + 3 ) ( y + 5 )
= ( x2 + 8x + 10 ) ( x2 + 8x + 12 )
= ( x2 + 8x + 10 ) ( x + 2 ) ( x + 6 )
đặt t = x2 + 8x + 7
có : t ( t + 8 ) + 15
= t2 + 8t + 15
= t2 + 5t + 3t + 15
= ( t2 + 5t ) + ( 3t + 15 )
= t ( t + 5 ) + 3 ( t + 5 )
= ( t + 3 ) ( t + 5 )
mà t = x2 + 8x + 7
⇒ ( x2 + 8x + 10 ) ( x2 + 8x + 12 )
1. phân tích các đa thức sau thành nhân tử = phương pháp nhóm hạng tử: x^3-4x^2-8x+8
mik bấm máy tính nó ra mỗi nghiệm là -2 thui bạn cứ tách từ từ nha bạn