Cho \(\dfrac{3a^{2^{ }}-b^2}{a^2+b^2}\) =\(\dfrac{3}{4}\)Tính a/b
nhanh nha nhanh nha!!! ^.^
cho tỉ lệ thức\(\dfrac{a}{b}=\dfrac{c}{d}\)
(a,b,c,d khác 0)
chứng tỏ rằng
bài 1 \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
bài 2 \(\dfrac{2a+c}{3a-c}=\dfrac{2b+d}{3b-d}\)
bài 3\(\dfrac{5a-2c}{3a-4c}=\dfrac{5b-2d}{3b-4d}\)
nhanh nha gấp lắm ạ
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
(a,b,c,d khác 0)
chứng tỏ rằng
bài 1: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
bài 2:\(\dfrac{2a+c}{3a-c}=\dfrac{2b+d}{3b-d}\)
bài 3:\(\dfrac{5a-2c}{3a-4c}=\dfrac{5b-2c}{3b-4d}\)
giúp nhanh nha
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
cho \(\dfrac{3a^2-b^2}{a^2+b^2}\) = \(\dfrac{3}{4}\). Tính \(\dfrac{a}{b}\)
\(\Leftrightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Leftrightarrow9a^2=7b^2\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{7}{9}\)
hay \(\dfrac{a}{b}\in\left\{\dfrac{\sqrt{7}}{3};-\dfrac{\sqrt{7}}{3}\right\}\)
\(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)
\(\Leftrightarrow4.\left(3a^2-b^2\right)=3\left(a^2+b^2\right)\)
\(\Leftrightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Leftrightarrow12a^2-3a^2=3b^2+4b^2\)
\(\Leftrightarrow9a^2=7b^2\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{7}{9}\)
\(\text{hoặc }\dfrac{a}{b}=\pm\dfrac{\sqrt{7}}{3}\)
Tìm tỉ số \(\dfrac{A}{B}\)biết:
A = \(\dfrac{2}{1.5}+\dfrac{3}{5.11}+\dfrac{4}{11.19}+\dfrac{5}{19.29}+\dfrac{6}{29.41}\)
B = \(\dfrac{40}{31.39}+\dfrac{35}{39.46}+\dfrac{30}{46.52}+\dfrac{25}{52.57}+\dfrac{20}{57.61}\)
Giải nhanh giúp mình nha. Cảm ơn nhiều :3
Tính B-C , biết B = 1.3.5. ... .99 và C = \(\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.......\dfrac{100}{2}\) . giúp mk nhanh nha
- Ta có : `C=51/2 * 52/2 * 53/2* ... * 100/2`
`-> C=(51.52.53...100)/(2^50)`
`-> C=((1.2.3...50).(51.52.53...100))/((1.2.3...50).2^50)`
`-> C=(1.2.3...100)/((1.2).(2.2).(3.2)...(50.2))`
`-> C=(1.2.3...100)/(2.4.6...100)`
`-> C=1.3.5.7...99`
- Từ đó ta có :
`B-C=1.3.5.7...99-1.3.5.7...99=0`
- Vậy `B-C=0`
cho \(\dfrac{a}{c}=\dfrac{c}{b}\)CMR:
\(\dfrac{b-a}{a}=\dfrac{b^2-a^2}{a^2+c^2}\)
các bạn nhanh lên hộ mk nha
mình ko biết đúng hay sai các bạn nếu thấy mình sai thì các bạn sửa hộ mình
ta có \(\dfrac{a}{c}=\dfrac{c}{b}=>ab=c^2\)
=>\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b^2-ab+ab-a^2}{a^2+ab}=\dfrac{b.\left(b-a\right)+a.\left(b-a\right)}{a.\left(a+b\right)}=\dfrac{\left(b+a\right).\left(b-a\right)}{a.\left(a+b\right)}=\dfrac{b-a}{a}=>ĐPCM\)
giúp mk giai bài này với
nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\left(\dfrac{a-c}{b-d}\right)^2=\dfrac{a^2+c^2}{b^2+d^2}\)
đó là chứng minh nha
nhanh dùm mk.ai nhanh và đúng mk tick cho
Cho a,b,c đôi 1 khác nhau và khác 0 thảo mãn \(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ac+1}{a}\)
Tính P=(\(5a^6b^6c^6-8a^2b^2c^2+2\))\(^{2020}\)
Giups mk vs ạ ai nhanh mk tick nha :>
Lời giải:
ĐKĐB \(\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Rightarrow \left\{\begin{matrix} a-b=\frac{b-c}{bc}\\ b-c=\frac{c-a}{ac}\\ c-a=\frac{a-b}{ab}\end{matrix}\right.\)
\(\Rightarrow (a-b)(b-c)(c-a)=\frac{(b-c)(c-a)(a-b)}{a^2b^2c^2}\)
Vì $a,b,c$ đôi 1 khác nhau nên $a^2b^2c^2=1$. Khi đó:
\(P=(5.1^3-8.1+2)^{2020}=(-1)^{2020}=1\)
Cho M= \(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+x^2\)
M the a,b,c biết \(x=\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c\)
Ai giups mk vs ai nhanh mk sẽ vote nha
Từ x=\(\dfrac{1}{2}\)a+\(\dfrac{1}{2}\)b+\(\dfrac{1}{2}\)c=\(\dfrac{1}{2}\).(a+b+c)\(\Rightarrow\)2x=(a+b+c)
M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x\(^2\)
= x\(^2\)-xb-ax+ab+x\(^2\)-xc-bx+bc+x\(^2\)-ax-cx+ac+x\(^2\)
= 4x\(^2\)-2ac-2bx-2cx+ab+bc+ac
= 4x\(^2\)-2x(a+b+c)+ab+bc+ca
Thay 2x=a+b+c,ta được:
M= 4x\(^2\)-2x.2c+ab+bc+ca
M= 4x\(^2\)-4x\(^2\)+ab+bc+ca
M= ab+bc+ca