Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn
Xem chi tiết
ILoveMath
19 tháng 1 2022 lúc 21:37

\(x+\dfrac{16}{x-1}\\ =x-1+\dfrac{16}{x-1}+1\)

Áp dụng BĐT Cô-si ta có:
\(x-1+\dfrac{16}{x-1}+1\\ \ge2\sqrt{\left(x-1\right).\dfrac{16}{x-1}}+1\\ =2\sqrt{16}+1\\ =9\)

Dấu "=" xảy ra

 \(\Leftrightarrow x-1=\dfrac{16}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

 

Lê Thị Bích Thảo
Xem chi tiết
Akai Haruma
22 tháng 7 2021 lúc 11:24

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

socola
Xem chi tiết
Nguyễn Tấn An
11 tháng 7 2018 lúc 9:20

Ta có: \(\dfrac{x^2+5}{\sqrt{x^2+4}}>2\Leftrightarrow\left(\dfrac{x^2+5}{\sqrt{x^2+4}}\right)^2-4>0\Leftrightarrow\dfrac{x^4+10x^2+25-4x^2-16}{x^2+4}>0\Leftrightarrow\dfrac{x^4+6x^2+9}{x^2+4}>0\Leftrightarrow\dfrac{\left(x^2+3\right)^2}{x^2+4}>0\)

Nguyên
Xem chi tiết
phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 7 2016 lúc 14:24

Mình nghĩ đề bài phải là tìm giá trị lớn nhất. Vì giả sử : \(P\left(x\right)=\sqrt{x-2}+\sqrt{4-x}\) , ta cần tìm x sao cho P(x) = 0. Không thể vì P(x) vô nghiệm.

TÌM GIÁ TRỊ LỚN NHẤT : 

Áp dụng bất đẳng thức Bunhiacopxki : \(P^2=\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)

\(\Rightarrow P^2\le4\Rightarrow P\le2\) . Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}2\le x\le4\\\sqrt{x-2}=\sqrt{4-x}\end{cases}\)\(\Leftrightarrow x=3\)

Vậy Max P = 2 <=> x = 3

 

Hoàng Đức
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 9 2021 lúc 23:26

Đề bài sai, ví dụ với \(x=y=\dfrac{1}{32}\) 

linh nguyen
Xem chi tiết
Akai Haruma
26 tháng 5 2022 lúc 17:35

Lời giải:
1. Chỉ áp dụng được khi $x\geq 0$

$x-1=(\sqrt{x}-1)(\sqrt{x}+1)$

2. $x^2-1=(x-1)(x+1)$

3. $x-4=(\sqrt{x}-2)(\sqrt{x}+2)$ (chỉ áp dụng cho $x\geq 0$)

4. $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
5. $x-4\sqrt{x}+4=(\sqrt{x})^2-2.2\sqrt{x}+2^2=(\sqrt{x}-2)^2$

6. $\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2x}{x-1}$

$=\frac{x+2\sqrt{x}+1}{x-1}+\frac{2x}{x-1}=\frac{3x+2\sqrt{x}+1}{x-1}$

Cậu bé nhỏ nhắn
Xem chi tiết
Thúy Trầnn
Xem chi tiết
Duy Mai Khương
24 tháng 10 2018 lúc 21:44

em lớp 6 nên ko biết làm

hihi

quanphampro
15 tháng 10 2019 lúc 15:13

\(\frac{a_1+a_2+...+a_n}{_n}\ge\sqrt[n]{a_1.a_2......a_n}\)