Tìm tham số m để hàm số: \(y=\sqrt{2x+2m-1}+\sqrt{x+2m-5}\) xác định trên \(\left(1;\infty\right)\)
tìm tất cả các giá trị của tham số m để hàm số y=\(\sqrt{x-m+1}+\dfrac{2x}{\sqrt{-x+2m}}\) xác định trên khoảng(3;4)
ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)
\(\Rightarrow x\in[m-1;2m)\)
Để hàm xác định trên (3;4)
\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)
\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)
Tìm tham số m để hàm số sau xác định trên R
1/ \(y=\sqrt{cos^2x+cosx-2m+1}\)
2/ \(y=\sqrt{cos2x-2cosx+m}\)
3/ \(y=\sqrt{sin^4x+cos^4x-sin2x-m}\)
1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.
Tìm giá trị của tham số m để:
Hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định trên (-1;3)
Cho hàm số y = \(\sqrt{\left(m+1\right)x+2m+3}\) với tham số m. Có bao nhiêu giá trị nguyên của m để hàm số xác định trên đoạn [-3 ; -1]
\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)
- Với \(m=-1\) thỏa mãn
- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)
\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)
\(\Rightarrow-1< m\le0\Rightarrow m=0\)
- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)
\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)
\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)
Vậy \(m=\left\{-2;-1;0\right\}\)
Tìm tất cả giá trị thực của tham số m để hàm số \(y=\sqrt{\left(m-2\right)x+2m-3}\) xác định với mọi x ∈ [-1; 4]
Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)
\(\Leftrightarrow mx-2x+2m-3\ge0\)
\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)
\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)
\(\Rightarrow1\le m\le\dfrac{11}{6}\)
1, Cho hàm số y=\(\sqrt{x-2m+1}\) .Tìm m để hàm số xác định trên (2 ;+∞)
Cho hàm số y=\(\dfrac{2x+m}{\sqrt{x-2m-1}-3}\)
Tìm m để hàm số xác định trên khoảng (0;+vô cùng). trình bày cách làm rõ nhá
100% group làm sai
1. Tìm tham số m để phương trình 3cos2x-7=2m có nghiệm?
2. Trên đoạn \([0;2\pi]\) , phương trình \(2cos^2x-\sqrt{3}cosx=0\)có bao nhiêu nghiệm?
3. Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y=\sqrt{2cosx-3m+14}\) xác định với mọi x thuộc R?
Help me!!!
1.
\(3cos2x-7=2m\)
\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)
Phương trình đã cho có nghiệm khi:
\(-1\le\dfrac{2m-7}{3}\le1\)
\(\Leftrightarrow2\le m\le5\)
2.
\(2cos^2x-\sqrt{3}cosx=0\)
\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)
Tìm m để hàm số xác định với mọi x thuộc R : \(Y=\sqrt{2m\cos^2x+\left(2-m\right)\cos x+4m-1}\)
để hàm số xác định với mọi x thuộc R thì
\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)
mà \(2cos^2x-cosx+4>0\) nên :
\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)
vậy điều kiện của m là : \(m\ge\frac{3}{7}\)
Tìm m để hàm số \(y=\sqrt{x-m}+\frac{1}{\sqrt{2m-3-x}}\) xác định trên khoảng (0, 1 )