Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dat
Xem chi tiết
Ma Sói
19 tháng 11 2018 lúc 13:55

1) Áp dụng bđt Cauchy:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)

Xong

Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 20:46

Ta chứng minh BĐT sau cho các số dương:

\(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)

Áp dụng:

\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)

Tương tự và cộng lại:

\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)

\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)

\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)

Vũ Nhung
Xem chi tiết
Lightning Farron
22 tháng 5 2017 lúc 22:17

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\le\dfrac{ab}{ab\left[ab\left(a+b\right)+1\right]}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{bc}{b^5+c^5+bc}\le\dfrac{a}{a+b+c};\dfrac{ca}{c^5+a^5+ca}\le\dfrac{b}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 21:27

\(a^5+b^2+ab+6\ge3a^2b+6\)

\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)

\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)

\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)

\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

\(\Rightarrow P\le\sqrt{1}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Neet
Xem chi tiết
Lightning Farron
6 tháng 4 2017 lúc 8:57

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

Lightning Farron
4 tháng 4 2017 lúc 20:35

lần sau đăng từng câu 1 dc ko bn :)

Neet
6 tháng 4 2017 lúc 16:24

system errow

Ctuu
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Nguyễn Minh Đăng
22 tháng 3 2021 lúc 22:10

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

Khách vãng lai đã xóa
Nguyễn Minh Đăng
22 tháng 3 2021 lúc 22:13

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

Khách vãng lai đã xóa
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 5 2021 lúc 22:17

Đề bài có nhầm lẫn gì ko nhỉ?

\(T=\dfrac{ab}{a^2+b^2+ab}+\dfrac{bc}{b^2+c^2+2bc}+\dfrac{ca}{c^2+a^2+ca}\le\dfrac{ab}{2ab+ab}+\dfrac{bc}{2bc+bc}+\dfrac{ca}{2ca+ca}=1\)

Lưu Thị Thảo Ly
Xem chi tiết
Nguyễn Huy Tú
16 tháng 8 2017 lúc 9:06

Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel và AM - GM có:
\(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}=\dfrac{a^6}{abc}+\dfrac{b^6}{abc}+\dfrac{c^6}{abc}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

Dấu " = " khi a = b = c = 1

Vậy...

Akai Haruma
16 tháng 8 2017 lúc 16:19

Lời giải khác:

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} \frac{a^5}{bc}+abc\geq 2\sqrt{a^6}=2a^3\\ \frac{b^5}{ac}+abc\geq 2\sqrt{b^6}=2b^3\\ \frac{c^5}{ab}+abc\geq 2\sqrt{c^6}=2c^3\end{matrix}\right.\Rightarrow \frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq 2(a^3+b^3+c^3)-3abc\)

Mặt khác, cũng theo BĐT AM-GM:

\(a^3+b^3+c^3\geq 3abc\Rightarrow 2(a^3+b^3+c^3)-3abc\geq a^3+b^3+c^3\)

Kéo theo \(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq a^3+b^3+c^3\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)