Tìm GTLN của A biết :
A= 3 - 10x2 - 4xy - 4y2
ính gtln,gtnn
a =25x2-20x+7
b=-x2+2x-2
c=9x2-12x
d=3-10x2-4xy-4y2
e=4x-x2+1
giúp mk vs mk đg cần gấp
viết lại đề đi
\(A=25x^2-20x+7\)
\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)
Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)
\(B=-x^2+2x-2\)
\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)
\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow x=1\)
Vậy \(maxB=-3\Leftrightarrow x=1\)
\(C=9x^2-12x\)
\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)
\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)
Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)
\(D=3-10x^2-4xy-4y^2\)
\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)
\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)
Vậy \(maxD=-3\Leftrightarrow x=y=0\)
\(E=4x-x^2+1\)
\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)
\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)
Dấu " = " xảy ra \(\Leftrightarrow x=2\)
Vậy \(maxE=5\Leftrightarrow x=2\)
Tìm GTLN của bt:
T= -2x2 -4y2 -4x+12y+4xy+2002
\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)
\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)
\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
Giúp me zới!!!
Bài 1: Tìm giá trị nhỏ nhất:
a)A=x2-2xy+5y2+4y+51
b)B=121/-4xy2-12x+2
c)C=9/-2x2+4x-7
d)10x2+4y2-4xy+8x-4y+20
e)E=9x2+2y2+6xy-6x-8y+10
a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)
\(=x^2-2xy+y^2+4y^2+4y+1+50\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)
\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)
c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)
\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)
d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)
\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)
\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)
Bài 3:
b) Rút gọn biểu thức B=(x+y)(2x-y)+(xy4-x2y2):xy2
Bài 4: Phân tích thành nhân tử
a) 25x3-10x2+xx
b) x2-9x+9y-y2
c) 16-x2-4y2-4xy
Bài 5: Tìm x biết
a) 36-x3=00
b) (x+2)(x-2)-(x+1)2=7
Bài 3:
b. $B=(x+y)(2x-y)+(xy^4-x^2y^2):(xy^2)$
$=(2x^2-xy+2xy-y^2)+(y^2-x)$
$=2x^2+xy-y^2+y^2-x=2x^2+xy-x$
Bài 4:
a. $25x^3-10x^2+x=x(25x^2-10x+1)=x(5x-1)^2$
b. $x^2-9x+9y-y^2=(x^2-y^2)-(9x-9y)=(x-y)(x+y)-9(x-y)=(x-y)(x+y-9)$
c. $16-x^2-4y^2-4xy=16-(x^2+4y^2+4xy)$
$=4^2-(x+2y)^2=(4-x-2y)(4+x+2y)$
Bài 5:
a. $36-x^3=100$
$x^3=36-100=-64=(-4)^3$
$\Rightarrow x=-4$
b.
$(x+2)(x-2)-(x+1)^2=7$
$\Leftrightarrow (x^2-4)-(x^2+2x+1)=7$
$\Leftrightarrow -2x-5=7$
$\Leftrightarrow -2x=12$
$\Leftrightarrow x=-6$
Tìm giá trị nhỏ nhất của biểu thức :
A=5+2x2+4y2+4xy-8x-12y
Lời giải:
$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$
$=(x+2y)^2-6(x+2y)+x^2+5-2x$
$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$
$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$
Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$
$\Leftrightarrow x=1; y=1$
tìm x biết
a) (5x-1)2-(5x-4)(5x+4)=7
b)5x2+4xy+4y2+4x+1=0
c)(x+2)3-x(x-1)(x+1)=6x2+21
GIÚP MK VS
Bài 1 : Phân tích đa thức thành nhân tử
a) x2-6x-y2+9
b) 25-4x2-4xy -y2
c) x2+2xy+y2- xz-yz
d) x2-4xy+4y2-z2+4tz-4t2
Bài 2 : Phân tích đa thức thành nhân tử
a) ax2+cx2-ay+ay2-cy+cy2
b) ax^2+ay^2-bx^2-by^2+b-a
c) ac^2-ad-bc^2+cd+bd-c^3
Bài 3 : Tìm x
a) x(x-5)-4x+20=0
b) x(x+6)-7x-42=0
c) x^3-5x^2+x-5=0
d) x^4-2x^3+10x2-20x=0
Biểu thức nào dưới đây là bình phương của hiệu x - 2y:
A. x2 + 2xy + 4y2.
B. x2 – 2xy + 4y2 .
C. x2 – 4xy + 4y2 .
D. x2 + 4xy + 4y2
Biết x2+4y2+9z2=3 Tìm GTLN của S=2x+4y+6x
Cho x;y ∈ 𝑅 thỏa mãn x2+y2 -xy=4 . Tìm giá trị lớn nhất và nhỏ nhất của C= x2+y2
a) Áp dụng bất đẳng thức Cosi ta có :
\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)
Suy ra \(S\leq 6\)
Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)