\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
GIẢI PHƯƠNG TRÌNH TRÊN HỘ MIK VỚI Ạ
Giả hộ mik bài nà vs ạ, cảm ơn nhiều!
Giải phương trình sau:
\(\sqrt{2-x^2+2x}\)+\(\sqrt{-x^2-6x-8}\)=\(1\)+\(\sqrt{3}\)
Điều kiện xác định
\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)
=> Tập xác định là tập rỗng
Vậy pt vô nghiệm
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Sqrt {x-2}-sqrt {x+1}+sqrt {2x-5}=2x2-5x
Mọi người giải giúp em hệ phương trình này với ạ
theo kinh nghiệm lâu năm của tui thì đề là;
\(\sqrt{x-2}-\sqrt{x+1}+\sqrt{2x-5}=2x^2-5x\) nhưng sao là hệ nhỉ
Tính tổng các nghiệm của phương trình sau : \(x^2-4x-3=\sqrt{x-5}\) ta được kết quả là :
A.\(\dfrac{3+\sqrt{29}}{2}\) B.\(\dfrac{-7-\sqrt{29}}{2}\) C.\(8\) D.\(\dfrac{5-\sqrt{29}}{2}\)
mng giải ra hộ mik ạ. mik cảm ơn
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=2\sqrt{2}\)giải phương trình ( cho em xin lời giải chi tiết ạ )
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+2\sqrt{2\left(x-2\right)}}+\sqrt{x-2\sqrt{2\left(x-2\right)}}=2\sqrt{2}\)
\(\Leftrightarrow2x+2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8\)
\(\Leftrightarrow2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8-2x\)
\(\Leftrightarrow4\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]=64-32x+4x^2\)
\(\Leftrightarrow4x^2-32x+64=64-32x+4x^2+\)
\(\Leftrightarrow64=64\) (Đúng)
⇒ Phương trình có vô số nghiệm.
Vậy \(S=\mathbb R\).
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=2\sqrt{2}\)
ĐK: \(x\ge2\), PT tương đương với:
\(x+2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}+x-2\sqrt{2x-4}=8\)
\(\Leftrightarrow2x+2\sqrt{x^2-4\left(2x-4\right)}=8\)
\(\Leftrightarrow2x+2\sqrt{x^2-8x+16}=8\\ \Leftrightarrow x+\left|x-4\right|=8\)
Với x < 4 => \(x+4-x=8\)
\(\Leftrightarrow4=8\) (loại)
Với \(x\ge4\) => \(x+x-4=8\)
\(\Leftrightarrow x=6\) (thỏa mãn)
giải phương trình'
a) \(\sqrt{2x+3}+\sqrt{x+1}=2\sqrt{2+5x+3}+3x-8\)
b) x2+\(x^2+\sqrt{2-x}=2x^2.\sqrt{2-x}\)
mik đag cần gấp
mấy bn giúp giùm ạ
PT \(\Leftrightarrow2x^2+\sqrt{2-x}=2x^2.\sqrt{2-x}\)
Đặt \(2x^2=a;\sqrt{2-x}=b\left(a,b\ge0\right)\)
Phương trình trở thành: \(a+b=ab\Leftrightarrow a-ab+b=0\)
Tới đây bí :v
Giải phương trình:
1) \(\sqrt{x^2+x-3}=x+m\)
2) \(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)
3) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-m=0\)
bác nào chịu khó, ngồi trình bày hộ vs ạ
Nghĩ đc bài nào làm bài đấy ^^
\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)
\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)
\(\Leftrightarrow x-2mx=m^2+3\)
\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)
*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)
Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)
Pt vô nghiệm
*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)
Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)
Kết hợp ĐKXĐ \(x^2+x-3\ge0\)
\(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)
Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2
=> KL
2) ĐKXĐ : -1 < x < 8
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)
\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Khi đó \(a+\frac{a^2-9}{2}=m\)
\(\Leftrightarrow2a+a^2-9=2m\)
\(\Leftrightarrow a^2+2a-9-2m=0\)(1)
Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)
Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)
\(\Leftrightarrow a^2+2a-9\ge-10\)
\(\Leftrightarrow a^2+2a+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)
Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 < x < 8
* với m < -5 thì pt vô nghiệm
P/S: chả bt cách này đúng ko nx =.='
- Giải phương trình ạ
\(\sqrt{4+20x}=3x+2\)
\( \sqrt{ 2x+5 } = x+1 \)
\(\sqrt{4+20x}=3x+2\left(x\ge-\dfrac{1}{5}\right)\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{8}{9}\left(N\right)\end{matrix}\right.\\ \sqrt{2x+5}=x+1\left(x\ge-\dfrac{5}{2}\right)\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-2\left(N\right)\end{matrix}\right.\)
\(\sqrt{4+20x}=3x+2\\ \Leftrightarrow4+20x=\left(3x+2\right)^2\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow-4-20x+9x^2+12x+4=0\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow x=0hoặcx=\dfrac{8}{9}\)
\(\sqrt{2x+5}=x+1\\ \Leftrightarrow2x+5=\left(x+1\right)^2\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2+2x+1-2x-5=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=\pm2\)
a: Ta có: \(\sqrt{20x+4}=3x+2\)
\(\Leftrightarrow9x^2+12x+4=20x+4\)
\(\Leftrightarrow9x^2-8x=0\)
\(\Leftrightarrow x\left(9x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{8}{9}\left(nhận\right)\end{matrix}\right.\)
Giải phương trình sau:
\(\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=1\)
\(\sqrt{2x^2+3x+1}-\sqrt{2x^2-2}=x+1\)
Mọi người giúp em với ạ