\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
tính
\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
√8√3 + 2√25√12 - 4√192
= √2.√4.√3 + 2.5.√4.√3 - 4.√16.√4.√3
= 2√6 + 10.√12 - 16.√12
= 2√6 - 6√12
= 2√6 - 6.√4.√3
= 2√6 - 6.2.√3
= 2√6 - 12√3
\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
a. \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
b. \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
chúc bạn học tốt:)
Ai giải cho mình phép này với, mình không biết bắt đầu từ đâu:
\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
\(\sqrt{2}\sqrt{4}\sqrt{3}+2.5\sqrt{4}\sqrt{3}-4\sqrt{16}\sqrt{4}\sqrt{3}=2\sqrt{6}+10\sqrt{12}-16\sqrt{12}=2\sqrt{6}-6\sqrt{12}=2\sqrt{6}-12\sqrt{3}\)
thực hiện phép tính
a, \(\dfrac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b, \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
c, \(\sqrt{2-\sqrt{3}}.\left(\sqrt{5}+\sqrt{2}\right)\)
d, \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
e, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
f, \(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
g, \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
h, \(\dfrac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)
i, \(\dfrac{\left(\sqrt{5+2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
k, \(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
l, \(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
m, \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
n, \(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3+1}}}+\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3+1}}}\)
h. \(\sqrt{5}+\sqrt{9-4\sqrt{5}}\)
i. \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
h)\(\sqrt{5}+\sqrt{9-4\sqrt{5}}=\sqrt{5}+\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}\)
\(=\sqrt{5}+\sqrt{\left(\sqrt{5-2}\right)^2}\)
\(=\sqrt{5}+\left|\sqrt{5}-2\right|\)
\(=\sqrt{5}+\sqrt{5}-2\)
\(=2\sqrt{5}-2\)
i. \(2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=\sqrt{2\sqrt{3}}\left(2-10+8\right)\)
\(=\sqrt{2\sqrt{3}}.0=0\)
\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
Thực hiện phép tính
\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}=0\)
a) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
b) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
c) \(\sqrt{2-\sqrt{3}}.\left(\sqrt{5}+\sqrt{2}\right)\)
Tính:
a) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
b) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
b: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)
\(=2\sqrt{5}-2-2\sqrt{5}\)
=-2
c: \(=\dfrac{\sqrt{4}\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{\sqrt{6}}{2}\)