Chủ đề:
Ôn thi vào 10Câu hỏi:
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2-xy+y-7=0\\x^2+xy-2y=4\left(x-1\right)\end{matrix}\right.\)
Bài IV (3,0 điêm)
Cho đường tròn (0,R) và điểm M nằm ngoài đường tròn (O). Từ M kẻ các tiếp tuyến
MA, MB (4,B là các tiếp điểm) và cát tuyên MCD với (O) (MCDkhông đi qua tâm), Cnằm
giữa M và D. Gọi K là trung điểm của CD.
1) Chứng minh tứ giác OBMK là tứ giác nội tiếp.
2) OK cắt AB tại N. Chứng minh NC là tiếp tuyến của (O).
3) Gọi giao điểm của AB và CD là I. Chứng minh rằng \(\)IB / IA = NB / NA
Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MN
a) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường tròn
b) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.
c) Kẻ ME ⊥ AB (E ∈ AB), MF ⊥ AC (F ∈ AC), MK ⊥ BC (K ∈ BC). Chứng minh góc KME bằng góc KMF
d) Gọi H là giao điểm của MB và KE, I là giao điểm của MC và KF. Chứng minh MK² = ME . MF
e) Chứng minh tứ giác MHKI nội tiếp và HI // BC.
Ai đó có thể giúp mình phần d và e không, chứ mình thì chịu với nó rồi. Ngày mai mình phải nộp rồi, các bạn giúp mình với.
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn tâm O bán kính R, 3 đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh các tứ giác AEHF, AEDB nội tiếp.
b) Vẽ đường kính AK của đường tròn tâm O.
Chứng minh AB . AC = 2R . AD
c) BE cắt (O) ở Q, CF cắt (O) tại P.
Chứng minh AP = AQ Và H đối xứng với P qua AB.
d) Chứng minh OC vuông góc với PE.
Các bạn giúp mình với, tối nay mình phải nộp cho thầy rồi