\(\dfrac{9}{23}\left|2x-3\right|+\left(7y+17\right)^2=0\)
Bài 1: Giải hệ pt
a) \(\left\{{}\begin{matrix}x-6y=17\\5x+y=23\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}40x+3y=10\\20x-7y=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y-2=0\\5x-y=11\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x-3y=5\\5x+2y=23\end{matrix}\right.\)
Lời giải:
Phương hướng giải là bạn sử dụng phương pháp thế, biểu diễn $x$ theo $y$ qua 1 trong 2 PT, sau đó thế vô PT còn lại giải PT 1 ẩn $y$
a) \(\left\{\begin{matrix}
x-6y=17\\
5x+y=23\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x=17+6y\\
5x+y=23\end{matrix}\right.\)
\(\Rightarrow 5(17+6y)+y=23\)
\(\Leftrightarrow 31y=-62\Leftrightarrow y=-2\)
$x=17+6y=17+6(-2)=5$
Vậy $(x,y)=(5,-2)$
Các phần còn lại bạn giải tương tự
b) $(x,y)=(\frac{1}{4}, 0)$
c) $(x,y)=(3, 4)$
d) $(x,y)=(\frac{79}{21}, \frac{44}{21})$
CMR vs mọi số nguyên x,y thì
a.\(\left(2x^2+3y\right)⋮17\Leftrightarrow\left(9x^2+5y\right)⋮17\)
b.\(\left(5x^2-4y\right)⋮23\Leftrightarrow\left(3x^2-7y\right)⋮23\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Giải hệ phương trình
a. \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{3x+5}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5y+9}{y+4}=9\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\left(x-y\right)^2-3x-3y=4\\2x+y=3\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)
=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64
=>3x+2y=94 và 2x+2y=68
=>x=26 và x+y=34
=>x=26 và y=8
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)
=>x+1=18/35; y+4=9/13
=>x=-17/35; y=-43/18
Bài 1: Tìm x:
1. \(\left(2x-3\right)^2=9\)
2. \(\left(x-1\right)^2=\dfrac{9}{16}\)
3. \(\left(x+5\right)^3=-64\)
4. \(\left(2x+3\right)^2=25\)
5. \(x^2+1=82\)
6. \(x^2+\dfrac{7}{4}=\dfrac{23}{4}\)
7. \(\left(2x-3\right).\left(\dfrac{3}{4}x+1\right)=0\)
8. \(\left(5x-1\right).\left(2x-\dfrac{1}{3}\right)=0\)
các bạn giúp mềnh nha. sáng mai mk đi hok r
Tìm x:
a) \(\dfrac{1}{3}.x+\dfrac{2}{5}\left(x-1\right)=0\)
b)\(-5.\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)=x\)
c)\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2x\right)=0\)
d)\(9.\left(3x+1\right)^2=16\)
a: =>1/3x+2/5x-2/5=0
=>11/15x-2/5=0
=>11/15x=2/5
=>x=2/5:11/15=2/5*15/11=30/55=6/11
b: =>-5x-1-1/2x+1/3=x
=>-11/2x-2/3-x=0
=>-13/2x=2/3
=>x=-2/3:13/2=-2/3*2/13=-4/39
c: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=1/3 hoặc x=-1/2
d: 9(3x+1)^2=16
=>(3x+1)^2=16/9
=>3x+1=4/3 hoặc 3x+1=-4/3
=>3x=1/3 hoặc 3x=-7/3
=>x=1/9 hoặc x=-7/9
1 tìm x
\(\dfrac{15-x}{8}=\dfrac{x-23}{10}\)
\(5.3^x=8.3^{^{ }9}\)
\(\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(\dfrac{-1}{2}\right).\left(2015\right)^0\)
*** \(\dfrac{15-x}{8}=\dfrac{x-23}{10}\)
\(\Rightarrow10\left(15-x\right)=8\left(x-23\right)\)
\(\Rightarrow150-10x=8x-184\)
\(\Rightarrow150+184=10x+8x\)
\(\Rightarrow18x=334\)
\(\Rightarrow x=\dfrac{167}{9}\)
*** \(\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right).\left(2015\right)^0\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right).1\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|=\left(-\dfrac{1}{2}\right)+3\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|=\dfrac{29}{10}\)
\(\Rightarrow\left|2x-1\right|=\dfrac{29}{10}:\dfrac{1}{2}\)
\(\Rightarrow\left|2x-1\right|=\dfrac{29}{5}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=\dfrac{29}{5}\\2x-1=-\dfrac{29}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{34}{5}\\2x=-\dfrac{24}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
Bài 1:
1/\(\left(-\dfrac{25}{13}\right)+\left(-\dfrac{19}{17}\right)+\dfrac{12}{13}+\left(-\dfrac{25}{17}\right)\) 6/ \(2\dfrac{2}{15}.\dfrac{9}{17}.\dfrac{3}{32}:\left(-\dfrac{3}{17}\right)\)
2/\(\dfrac{1}{2}-\left(-\dfrac{1}{3}\right)+\dfrac{1}{23}+\dfrac{1}{6}\) 7/\(\left(\dfrac{-3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-1}{4}\right):\dfrac{3}{7}\)
3/\(\left(-\dfrac{3}{7}\right).\dfrac{5}{11}+\left(-\dfrac{5}{14}\right).\dfrac{5}{11}\) 8/\(\left(-\dfrac{1}{3}\right).\left(-\dfrac{15}{19}\right).\dfrac{38}{45}\)
4/\(\left(-\dfrac{5}{11}\right).\dfrac{7}{15}.\dfrac{11}{-5}.\left(-30\right)\) 9/\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+......+\dfrac{1}{19.20}\)
5/\(\left(-\dfrac{5}{9}\right).\dfrac{3}{11}+\left(-\dfrac{13}{18}\right).\dfrac{3}{11}\) 10/\(\dfrac{1}{9.10}-\dfrac{1}{8.9}-\dfrac{1}{7.8}-......-\dfrac{1}{2.3}-\dfrac{1}{1.2}\)
Thực hiện phép tính:
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
b) \(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
c) \(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(-\dfrac{5}{7}\right)\)
d) \(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)\)
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Giải pt: { máy tính cho ra x=-1 , x=4 }
\(\left(x+1\right)\sqrt{16x+17}=8x^2-15x-23\) (1)
ĐK: \(16x+17\ge0\Leftrightarrow x\ge-\dfrac{17}{16}\)
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(N\right)\\\left\{{}\begin{matrix}16x+17=\left(x-\dfrac{23}{8}\right)^2\\x\ge\dfrac{23}{8}\end{matrix}\right.\end{matrix}\right.\)(2)
(2) \(\Leftrightarrow16x+17=x^2-\dfrac{23}{4}x+\dfrac{529}{64}\Leftrightarrow x^2-\dfrac{87}{4}-\dfrac{559}{64}=0\) (Xấu quéc!! Pt này không có nghiệm = 4---> sai ở đâu vậy ạ??)
Cảm ơn trước nak ^^!
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
cái này đâu ra z ???
nguyen van tuan: hì, xin lỗi, làm hơi tắt ^^!
\(\left(1\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}=\left(x+1\right)\left(x-\dfrac{23}{8}\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}-\left(x+1\right)\left(x-\dfrac{23}{8}\right)=0\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)