Sin3x=Cosx.Cos2x (tan^2x+tan2x)
\(\tan x+\tan2x=\sin3x\cos x\)
ĐKXĐ: ...
\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}=sin3x.cosx\)
\(\Leftrightarrow\frac{sinx.cos2x+cosx.sin2x}{cosx.cos2x}-sin3x.cosx=0\)
\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}-sin3x.cosx=0\)
\(\Leftrightarrow sin3x\left(\frac{1}{cosx.cos2x}-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\Rightarrow x=\frac{k\pi}{3}\\\frac{1}{cosx.cos2x}-cosx=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos^2x.cos2x=1\)
\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)cos2x=1\)
\(\Leftrightarrow cos^22x+cos2x-2=0\Rightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=k\pi\)
(sin3x+cosx)sin3x+(cos3x+sinx)cos3x/ cos4x = 1+tan2x/1-tan2x
\(\frac{\left(sin3x+cosx\right)sin3x+\left(cos3x+sinx\right)cos3x}{cos4x}\)
\(=\frac{sin^23x+sin3x.cosx+cos^23x+cos3x.sinx}{cos4x}=\frac{1+sin3x.cosx+cos3x.sinx}{cos4x}\)
\(=\frac{1+sin4x}{cos4x}=\frac{sin^22x+cos^22x+2sin2x.cos2x}{cos^22x-sin^22x}=\frac{\left(cos2x+sin2x\right)^2}{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}\)
\(=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{1+\frac{sin2x}{cos2x}}{1-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Chứng minh :
a) ( tan2x - tanx )cos 2x = tan x
b) 2(1-sinx)(1+cosx) = (1-sinx+cosx)2
c) 1 + cotx + cot2x + cot3x = cosx+sinx / sin3x
d) cos3x/sinx + sin3x/cosx = 2cot2x
a/
\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)
\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)
b/
\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)
\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)
\(=\left(1-sinx+cosx\right)^2\)
c/
\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)
\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)
d/
\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)
giải phương trình sau : a) \(\tan\frac{x}{2}=\tan x\) ; b) \(\tan\left(2x+10^o\right)+\cot x=0\) ; c) \(\left(1-\tan x\right)\left(1+\sin2x\right)=1+\tan x\) ; d) \(\tan x+\tan2x=\sin3x\cos x\) ; e) \(\tan x+\cot2x=2\cot4x\)
giải phương trình sau : a) \(\tan\frac{x}{2}=\tan x\) ; b) \(\tan\left(2x+10^o\right)+\cot x=0\) ; c) \(\left(1-\tan x\right)\left(1+\sin2x\right)=1+\tan x\) ; d) \(\tan x+\tan2x=\sin3x\cos x\) ; e) \(\tan x+\cot2x=2\cot4x\)
Tìm tập xác định của hàm số
1/ \(y=\dfrac{sinx}{\sqrt{3-cosx}}\)
2/ \(y=\sqrt{1-sin3x}\)
3/ \(y=\dfrac{tan2x+1}{sinx}\)
4/ \(y=sin\sqrt{2x-1}\)
1: ĐKXĐ: 3-cosx>0
=>cosx<3(luôn đúng)
2: ĐKXĐ: 1-sin 3x>=0
=>sin 3x<=1(luôn đúng)
3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi
=>x<>kpi và x<>pi/4+kpi/2
4: ĐKXĐ: 2x-1>=0
=>x>=1/2
Giải các phương trình :
a) \(\cos3x-\sin2x=0\)
b) \(\tan x\tan2x=-1\)
c) \(\sin3x+\sin5x=0\)
d) \(\cot2x\cot3x=1\)
Chứng minh đẳng thức: \(\left(tan2x-tanx\right)\left(sin2x-tanx\right)=tan^2x\)
\(=\left(\dfrac{2sinx.cosx}{cos2x}-\dfrac{sinx}{cosx}\right)\left(2sinx.cosx-\dfrac{sinx}{cosx}\right)\)
\(=sinx\left(\dfrac{2cosx}{cos2x}-\dfrac{1}{cosx}\right).sinx\left(2cosx-\dfrac{1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{2cos^2x-\left(2cos^2x-1\right)}{cosx.cos2x}\right)\left(\dfrac{2cos^2x-1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{1}{cosx.cos2x}\right)\left(\dfrac{cos2x}{cosx}\right)=\dfrac{sin^2x}{cos^2x}=tan^2x\)