tìm x: b. 8x2 + 12x2 + 6x + 1 = 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1 :Phân tích đa thức sau thành nhân tử
(12x2+6x)(y+z)+(12x2+6x)(y-z)
Bài 2:tìm x:
x(x-6)+10(x-6)=0
1.
\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)
2.
\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt
Bài 1:
Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)
\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)
\(=6x\left(2x+1\right)\cdot2y\)
\(=12xy\left(2x+1\right)\)
Bài 2:
Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
Rút gọn các biểu thức sau:
a) A = x − 9 + 7 − x khi x ≥ 9
b) B = − 3 x 2 − 8 x 2 + x − 2 khi x≥0
c) C = x + 1 2 x 2 − x + 1 2 x + 1 4 khi x > 1 .
tìm x biết
a/ (x - 4)(x + 4)- x(x + 2)=0
b/ 3x(x - 2)- x + 2 = 0
c/ 6x - 12x2 = 0
d/ 4x(3 - x)+(x - 2)(x + 2)= 0
a) (x-4)(x+4)-x(x+2)=0
x2-16-x2-2x = 0
-16 - 2x = 0
2x = -16
x = -16/2
x = -8
b) 3x(x-2)-x+2=0
(3x-1)(x-2)=0
=> x ∈ {1/3 ; 2 }
c) 6x - 12x2 = 0
6x(1-2x) = 0
=> x ∈ {0; 1/2 }
d) mình thấy có vẻ hơi sai đề nên mình ko giải được, bạn thông cảm nha
d/ 4x (3 - 1/4 x) + (x -2) ( x+ 2)
câu d bị sai đề
Bài 2. Tìm x, biết:
a/ (x – 4)(x + 4) - x(x + 2) = 0
b/ 3x(x – 2) – x + 2 = 0
c/ 6x - 12x2 = 0
d/ 4x(3 - 14x) + (x – 2)(x + 2) = 0
\(a,\Leftrightarrow x^2-16-x^2-2x=0\\ \Leftrightarrow2x=-16\Leftrightarrow x=-8\\ b,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow6x\left(1-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\\ d,\Leftrightarrow12x-56x^2+x^2-16=0\\ \Leftrightarrow55x^2-12x+16=0\\ \Delta=144-4\cdot55\cdot16< 0\\ \Leftrightarrow x\in\varnothing\)
8x3+12x2+6x+1=0
\(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
8x3+12x2+6x+1=0
đề sai, mk sửa :
\(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy ...
tìm x biết a) ( x + 3 )2 - ( 2x + 1 ).( x+3 ) = 0 ; b) x3 - 12x2 + 36x = 0
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
a, (x+3)2 - ( 2x + 1 ).( x+3)=0 b, x3-12x2+36x =0
=> (x+3).(x+3-2x-1) => x(x2-12x+36) = 0
=>(x+3).(-x+2) => x(x-6)2 = 0
=> x+3=0 <=> x=-3 => x=0 <=> x=0
-x+2=0 <=> x=-2 x-6= 0 <=> x=6
Tìm đa thức N thỏa mãn mỗi đẳng thức sau:
a) x + 1 N = x 2 − 2 x + 4 x 3 + 8 với x ≠ − 1 và x ≠ − 2
b) ( x − 3 ) N 3 + x = 2 x 3 − 8 x 2 − 6 x + 36 2 + x với x ≠ ± 3 và x ≠ − 2 .
a) Kết quả N = (x + 1)(x + 2);
b) Kết quả N = 2(x + 3)(x - 3).
Tìm x, biết:
a) 2(5x-8)-3(4x-5) = 4(3x-4) + 11;
b) 2 x ( 6 x - 2 x 2 ) + 3 x 2 ( x - 4 ) = 8;
c) 2 ( x 3 - 1 ) - 2 x 2 ( x + 2 x 4 ) + ( 4 x 5 + 4 ) x = 6;
d)(2x)2(4x-2)-(x3 -8x2) = 15.
a) x = 2 7 b) x = 2.
c) x = 2 d) x = 1.
Tính giá trị biểu thức.
a)A=-x3+6x2-12x+8 tại x=-28
b)B=8x3+12x2+6x+1 tại x=1/2
a) \(A=-x^3+6x^2-12x+8\)
\(A=-\left(x^3-6x^2+12x-8\right)\)
\(A=-\left(x-2\right)^3\)
Thay x=-28 vào A ta có:
\(A=-\left(-28-2\right)^3=27000\)
Vậy: ...
b) \(B=8x^3+12x^2+6x+1\)
\(B=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3\)
\(B=\left(2x+1\right)^3\)
Thay \(x=\dfrac{1}{2}\) vào B ta có:
\(B=\left(2\cdot\dfrac{1}{2}+1\right)^3=8\)
Vậy: ...