Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Tiểu yêu tinh cute
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 10:06

Vẽ hình:

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0

Với x = 0 thì hàm số đạt giá trị nhỏ nhất bằng 0. Không có giá trị nào của hàm số để đạt giá trị lớn nhất.

Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0.

Hàm số đạt giá trị lớn nhất y = 0 khi x = 0 . Không có giá trị bào của x để hàm số đạt giá trị nhỏ nhất.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2017 lúc 10:49

Đáp án D

Đặt

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 9 2017 lúc 11:04

Chọn D

Rhider
Xem chi tiết
Minh Hiếu
26 tháng 1 2022 lúc 16:40

Tham khảo

 y = 4sin √ x            ( đk x   ≥ 0 )
ta thấy: -1 ≤  sin √ x  ≤ 1
           <=> -4 ≤  4sin √ x  ≤ 4 
           <=> -4 ≤  y  ≤ 4 
max y  = 4 
dấu "=" xảy ra <=> sin √ x  = 1 
<=> √ x  =  pi/2 +2kpi   
<=>  x = (pi/2 +2kpi )^2
min y  = -4 
dấu "=" xảy ra <=> sin √ x  = -1 
<=> √ x  =  -pi/2 +2kpi   
<=>  x = (-pi/2 +2kpi)^2

Ami Mizuno
26 tháng 1 2022 lúc 16:43

a. \(y=2cos\left(x+\dfrac{\pi}{3}\right)+3\)

Ta có: \(-1\le cos\alpha\le1\)

\(\Leftrightarrow-2\le2cos\alpha\le2\)

\(\Leftrightarrow-2+3\le2cos\alpha+3\le2+3\)

\(\Leftrightarrow1\le2cos\alpha+3\le5\)

Vậy y đạt GTNN ymin=1 khi \(\left[{}\begin{matrix}x=\dfrac{2}{3}\pi+k2\pi\\x=\dfrac{-4}{3}\pi+k2\pi\end{matrix}\right.\) và y đạt GTLN khi ymax=5 khi \(x=-\dfrac{\pi}{3}+k2\pi\)

キエット
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 19:54

1. Không dịch được đề

2.

\(-1\le cos2x\le1\Rightarrow1\le y\le3\)

3.

a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b.

\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)

\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

4.

\(y=\left(tanx-1\right)^2+2\ge2\)

\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 2 2019 lúc 18:08

Ta có y = x 2 + 2 x + a - 4 = x + 1 2 + a - 5  

Đặt u = x + 1 2  khi đó ∀ x ∈ - 2 ; 1  thì u ∈ 0 ; 4  

Ta được hàm số f u = u + a - 5  

Khi đó

M a x x ∈ - 2 ; 1 y = M a x x ∈ 0 ; 4 f u = M a x f 0 , f 4 = M a x a - 5 ; a - 1  

Trường hợp 1:

  a - 5 ≤ a - 1 ⇔ a ≤ 3 ⇒ M a x x ∈ 0 ; 4 f u = 5 - a ≥ 2 ⇔ a = 3

Trường hợp 2:

  a - 5 ≤ a - 1 ⇔ a ≥ 3 ⇒ M a x x ∈ 0 ; 4 f u = a - 1 ≥ 2 ⇔ a = 3

Vậy giá trị nhỏ nhất của M a x x ∈ - 2 ; 1 y = 2 ⇔ a = 3

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 4 2018 lúc 11:11

Đáp án D.

Sử dụng máy tính cầm tay chức năng TABLE với thiết lập Start ‒5; End 5; Step 1 thì ta có

Từ bảng giá trị ta kết luận được giá trị lớn nhất của hàm số đạt được là 400 khi x = − 5 .

Từ bảng giá trị trên ta chưa thể kết luận được giá trị nhỏ nhất của hàm số.

Ta thấy  x 3 + 3 x 2 − 72 x + 90 ≥ 0, ∀ x ∈ ℝ   .

Dấu bằng xảy ra khi x 3 + 3 x 2 − 72 x + 90 = 0 .

Trong ba nghiệm trên ta thấy nghiệm  x 3 ∈ − 5 ; 5   . Từ đây ta có thể kết luận giá trị nhỏ nhất của hàm số đạt được là 0 khi x = x 3 .

 

Vậy tổng cần tìm là 400. Ta chọn D.