Chứng minh các hằng đẳng thức sau :
a) (x+y)^3 - (x^3+y^3) = 3xy(x+y)
Chứng Minh Đẳng Thức : (x+y)^3=x^3+y^3+3xy(x+y)
\(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2=x^3+y^3+3xy\left(x+y\right)\)
\(x^3+y^3+3xy\left(x+y\right)=\left(x^3+x^2y\right)+\left(y^3+y^2x\right)+2xy\left(x+y\right)\)
\(=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)
bài 1 chứng minh các đẳng thức sau
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{1}{x-y}\)
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
Cm các hằng đẳng thức :
a. x^3+y^3= (x+y)[(x-y)^2 +xy]
b. X^3 + y^3 - xy (x+y)=(x+y)(x-y)^2
c. (x+y)(x^2 -xy + y^2) = (x+y)^3-3xy(x+y)
Giúp mình với _( Cảm ơn rất nhiều , mình đang cần gấp ạ
a. Ta có : (x + y)[(x - y)2 + xy]
= (x + y)(x2 - 2xy + y2 + xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
b. Ta có : x3 + y3 - xy(x + y)
= x3 + y3 - x2y - xy2
=x2(x - y) + y2(y - x)
= (x - y)(x2 - y2)
= (x - y)2.(x + y) đpcm
c) Ta có (x + y)3 - 3xy(x + y)
= (x + y)[(x + y)2 - 3xy)
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2) (đpcm)
a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )
b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )
c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )
a,\(x^3+y^3=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)
\(VP=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)
\(=\left(x+y\right)\left(x^2-2xy+y^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3=VT\)
\(\Rightarrowđpcm\)
b,\(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x-y\right)^2\)
\(VT=x^3+y^3-xy\left(x+y\right)\)
\(=x^3+y^3-x^2y-xy^2\)
\(=\left(x^3-x^2y\right)+\left(y^3-xy^2\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)^2\left(x+y\right)=VP\)
\(\Rightarrowđpcm\)
c,\(\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(VP=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
\(VT=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(\Rightarrow VP=VT\left(đpcm\right)\)
Chứng minh đẳng thức
a) x^3+y^3=(x+y)[(x-y)^2+xy]
b)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
c) ( x+y)(x^2-xy+y^2)=(x+y)^3 - 3xy(x+y)
Chứng minh các đẳng thức sau :
a) \(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{xy+y^2}{2x-y}\)
b) \(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{1}{x-y}\)
bài 4 : tìm x biết(áp dụng hằng đẳng thức)
a/ (x-2)^3 -x(x+1)(x-1) + 6x(x-3) = 0 ; b/(x+1)^3 - ( x-1)^3 -6(x-1)^2 = -10
bài 5 Cho x+y=4 . Tính giá trị biểu thức : A= 9+3(x+y) + x^3 + y^3 - 2x^2 - 2y^2 - 4xy + 3xy( x+y)
bài 6 Cho x-y = 3 .Tính giá trị biểu thức: B= 2xy - y^2- x^2 + x3 - 3xy( x-y) - y^3
giúp mình với mình cần rất gấp . Các bạn khi giải nhớ cả 3 bài đều phải áp dụng hằng đẳng thức . THANK YOU !
Giúp mình với ạ
Tính gt biểu thức bằng cách vận dụng hằng đẳng thức:
a, \(\dfrac{x^3}{27}-\dfrac{x^2}{3}+6x-1\)với x= 303
b, B= 2.( x^3+y^3) - 3.( x^2 + y^2) với x+y= 1
c, C= x^3+y^3+3xy với x+y= 1
Lời giải:
a.
$27A=x^3-9x^2+162x-27=(x-3)^3+135x$
$=(303-3)^3+135.303=27040905$
$A=1001515$
b.
$B=2[(x+y)^3-3xy(x+y)]-3[(x+y)^2-2xy]$
$=2(1-3xy)-3(1-2xy)=2-6xy-3+6xy=-1$
c.
$C=x^3+y^3+3xy(x+y)=(x+y)^3=1^3=1$
Chứng minh đẳng thức sau :
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{1}{x-y}\)
Ta phân tích mẫu:
\(x^3+2x^2y-xy^2-2y^3\)
\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)
\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)
\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)
Thay vào ta có:
\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)
Vậy ta có điều phải chứng minh
Chứng minh các đẳng thức sau: 2 ( x - y ) 3 ( y - x ) = - 2 3 ( v ớ i x ≠ y )