pt đa thức thành nhân tử
a) x2-x-1
b) 6x2-x-1
phân tích đa thức sau thành nhân tử
a) (x-1)4-2(x2-2x+1)+1
b) (x+1)(x+2)(x+4)(x+5)-4
\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)
Bài 1: phân tích đa thức thành nhân tử
a)x2-y2-2x-2y e)x4-2x3+2x-1
b)x2(x+2y)-x-2y f)x4+x3+2x2+x+1
c)x3-4x2-9x+36 g)x2y+xy2+x2z+y2z+2xyz
d)x4+2x3+2x-1 h)3x3-3y2-2(x-y)2
Làm chi tiết giúp mình với ạ , cảm ơn
e) Ta có: \(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\cdot\left(x-1\right)^3\)
h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
a) Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2\left(x+2y\right)-x-2y\)
\(=\left(x+2y\right)\left(x^2-1\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
c) Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
d) Ta có: \(x^4+2x^3+2x-1\)
\(=\left(x^2-1\right)\left(x^2+1\right)+2x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x-1\right)\)
Phân tích các đa thức sau thành nhân tử
a) 36a4 – y2
b) x2 - 4xy + 4y2
c) 6x2 - 5x −1
\(a,=\left(6a^2-y\right)\left(6a^2+y\right)\\ b,=\left(x-2y\right)^2\\ c=\left(6x^2-6x\right)+\left(x-1\right)=6x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(6x+1\right)\)
phân tích đa thức thành nhân tử
a) 6x2+x-2
\(=\left(6x^2-3x\right)+\left(4x-2\right)\)
\(=3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(3x+2\right)\left(2x-1\right)\)
\(=6x^2-3x+4x-2=6x\left(x-2\right)+2\left(x-2\right)=2\left(3x+2\right)\left(x-2\right)\)
Phân tích đa thức sau thành nhân tử
a)x.(x+1).(x+2),(x+3)+1
b)(1+x2).(1+y2)+4xy+2.(x+y).(1+xy)=25
C)(y+1)4+y4=(x+1)2+x2
giúp e với ak
a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)
b) \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\Leftrightarrow1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)-25=0\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\Leftrightarrow\left(x+y+1+xy\right)^2-25=0\Leftrightarrow\left(x+y+xy-24\right)\left(x+y+xy+26\right)=0\)
a: Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
bài 1 : phân tích đa thức sau thành nhân tử
a)x2 + 4x +4
b)4x2 - 4x + 1
c) 2x- 1 -x2
d) x2+ x +\(\dfrac{1}{4}\)
e)9 - x2
g)(x+5)2 - 4x2
h)(x+1)2 -(2x - 1 )2
i)x2y2 - 4xy +1
k)y2-(x2 - 2x +1 )
l)x3 + 6x2+12x +8
m) 8x3 - 12x2y + 6xy2 - y3
a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c: \(2x-1-x^2\)
\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)
d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)
g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)
\(=\left(5-x\right)\left(5+3x\right)\)
h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)
\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)
\(=3x\left(-x+2\right)\)
i: \(=x^2y^2-4xy+4-3\)
\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)
k: \(=y^2-\left(x-1\right)^2\)
\(=\left(y-x+1\right)\left(y+x-1\right)\)
l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)
m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a, 3x(2x - y) + 5y(y - 2x)
b, (x - 5)2 - 9(x + y)2
c, y2 + 2yz + z2 - xy - xz
d, x2 - 9x2y2 + y2 + 2xy
e, x2 - 10x + 24
g, 6x2 + 7x - 5
h, x2 + 4xy - 12y2
k, a4 + 3a2 + 4
a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)
\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)
\(=\left(3x-5y\right)\left(2x-y\right)\)
b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)
\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)
\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)
\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)
\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)
a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)
e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)
g) \(6x^2+7x-5\)
=\(6x^2+10x-3x-5\)
=\(\left(6x^2+10x\right)-\left(3x+5\right)\)
=\(2x\left(3x+5\right)-\left(3x+5\right)\)
=\(\left(2x-1\right)\left(3x+5\right)\)
phân tích đa thức thành nhân tử
a,6x2 + 7xy + 2y2
b,) x2 – y2 + 10x – 6y + 16
c,4x4 + y4
a) 6x² + 7xy + 2y²
= 6x² + 4xy + 3xy + 2y²
= (6x² + 4xy) + (3xy + 2y²)
= 2x(3x + 2y) + y(3x + 2y)
= (3x + 2y)(2x + y)
b) x² - y² + 10x - 6y + 16
= x² + 10x + 25 - y² - 6y - 9
= (x² + 10x + 25) - (y² + 6y + 9)
= (x + 5)² - (y + 3)²
= (x + 5 - y - 3)(x + 5 + y + 3)
= (x - y + 2)(x + y + 8)
c) 4x⁴ + y⁴
= 4x⁴ + 4x²y² + y⁴ - 4x²y²
= (2x² + y²)² - (2xy)²
= (2x² + y² - 2xy)(2x² + y² + 2xy)
Bài 1:phân tích đa thức thành nhân tử
a)x2-2x-4y2-4y e)x4+2x3+2x2+2x+1
b)x3+2x2+2x+1 f)x5+x4+x3+x2+x+1
c)x3-4x2+12x-27
d)a6-a4+2a3+2a2
Làm chi tiết giúp mình với ạ, cảm ơn
a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)
d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)
a) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
b) Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
d) Ta có: \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left[a^2\left(a^2-1\right)+\left(2a+2\right)\right]\)
\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\cdot\left(a+1\right)\left(a^3-a+2\right)\)
c) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
Bài 3: Phân tích đa thức sau thành nhân tử.
a) x4 + 2x2 + 1
b) 4x2 - 12xy + 9y2
c) -x2 - 2xy - y2
d) (x + y)2 - 2(x + y) + 1
e) x3 - 3x2 + 3x - 1
g) x3 + 6x2 + 12x + 8
h) x3 + 1 - x2 - x
k) (x + y)3 - x3 - y3
a) x⁴ + 2x² + 1
= (x²)² + 2.x².1 + 1²
= (x² + 1)²
b) 4x² - 12xy + 9y²
= (2x)² - 2.2x.3y + (3y)²
= (2x - 3y)²
c) -x² - 2xy - y²
= -(x² + 2xy + y²)
= -(x + y)²
d) (x + y)² - 2(x + y) + 1
= (x + y)² - 2.(x + y).1 + 1²
= (x - y + 1)²
e) x³ - 3x² + 3x - 1
= x³ - 3.x².1 + 3.x.1² - 1³
= (x - 1)³
g) x³ + 6x² + 12x + 8
= x³ + 3.x².2 + 3.x.2² + 2³
= (x + 2)³
h) x³ + 1 - x² - x
= (x³ + 1) - (x² + x)
= (x + 1)(x² - x + 1) - x(x + 1)
= (x + 1)(x² - x + 1 - x)
= (x + 1)(x² - 2x + 1)
= (x + 1)(x - 1)²
k) (x + y)³ - x³ - y³
= (x + y)³ - (x³ + y³)
= (x + y)³ - (x + y)(x² - xy + y²)
= (x + y)[(x + y)² - x² + xy - y²]
= (x + y)(x² + 2xy + y² - x² + xy - y²)
= (x + y).3xy
= 3xy(x + y)