\(5^{n+1}-4.5^n\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\left(-3\right)^n-4.5^{n+1}}{2.4^n+3.5^n}\)
\(b,lim\dfrac{2^n-3^n+4.5^{n+2}}{2^{n+1}+3^{n+2}+5^{n+1}}\)
\(\lim\dfrac{\left(-3\right)^n-4.5^{n+1}}{2.4^n+3.5^n}=\lim\dfrac{\left(-3\right)^n+20.5^n}{2.4^n+3.5^n}=\lim\dfrac{\left(-\dfrac{3}{5}\right)^n+20}{2\left(\dfrac{4}{5}\right)^n+3}=\dfrac{0+20}{0+3}=\dfrac{20}{3}\)
\(\lim\dfrac{2^n-3^n+4.5^{n+2}}{2^{n+1}+3^{n+2}+5^{n+1}}=\lim\dfrac{2^n-3^n+100.5^n}{2.2^n+9.3^n+5.5^n}=\lim\dfrac{\left(\dfrac{2}{5}\right)^n-\left(\dfrac{3}{5}\right)^n+100}{2\left(\dfrac{2}{5}\right)^n+9\left(\dfrac{3}{5}\right)^n+5}=\dfrac{100}{5}=20\)
Tính lim \(\dfrac{5^n+2.3^n}{4.5^n+1}\)
Cho m=5/1.6+5/6.11+5/11.16+...+5/(n-1)(n+4)
(n thuộc N,n>1)
N=1/2.3+1/3.4+1/4.5+...+1/2012.2013
Tính:
5n+1-4.5n
\(5^{n+1}-4.5^n=5^n.\left(5-4\right)=5^n.1=5^n\)
Chúc bạn hcọ tốt!!!
Quy đồng các phân số sau
a)−8/31;−789/3131
b)11/2^3.3^4.5^2;29/2^2.2^4.5^3
c)1/n và 1/n+1 (n thuộc N)
a) \(\dfrac{-8}{31}=\dfrac{-8\cdot101}{31\cdot101}=\dfrac{-808}{3131}\)
\(\dfrac{-789}{3131}=\dfrac{-789}{3131}\)
c) \(\dfrac{1}{n}=\dfrac{n+1}{n\left(n+1\right)}\)
\(\dfrac{1}{n+1}=\dfrac{n}{n\left(n+1\right)}\)
Quy đồng các phân số sau
a)−8/31;−789/3131
b)11/2^3.3^4.5^2;29/2^2.2^4.5^3
c)1/n và 1/n+1 (n thuộc N)
a) \(-\dfrac{8}{31}=\dfrac{-8\cdot101}{31\cdot101}=\dfrac{-808}{3131}\)
\(\dfrac{-789}{3131}=\dfrac{-789}{3131}\)
c) \(\dfrac{1}{n}=\dfrac{n+1}{n\left(n+1\right)}\)
\(\dfrac{1}{n+1}=\dfrac{n}{n\left(n+1\right)}\)
Quy đồng các phân số sau
a)−8/31;−789/3131
b)11/2^3.3^4.5^2;29/2^2.2^4.5^3
c)1/n và 1/n+1 (n thuộc N)
a) \(-\dfrac{8}{31}=\dfrac{-8\cdot101}{31\cdot101}=\dfrac{-808}{3131}\)
\(\dfrac{-789}{3131}=\dfrac{-789}{3131}\)
b) \(\dfrac{11}{2^3\cdot3^4\cdot4^5}=\dfrac{11\cdot2^3\cdot5^3}{2^6\cdot3^4\cdot4^5\cdot5^3}=\dfrac{11000}{2^6\cdot3^4\cdot4^5\cdot5^3}\)
\(\dfrac{29}{2^2\cdot2^4\cdot5^3}=\dfrac{29\cdot3^4\cdot4^5}{2^6\cdot3^4\cdot4^5\cdot5^3}=\dfrac{2405376}{2^6\cdot3^4\cdot4^5\cdot5^3}\)
c) \(\dfrac{1}{n}=\dfrac{n+1}{n\left(n+1\right)}\)
\(\dfrac{1}{n+1}=\dfrac{n}{n\left(n+1\right)}\)
Tinh:
5n+1-4.5n
5n+1-4.5n
=5n.5-4.5n
=5n
\(5^{n+1}-4.5^n=5^n.5-4.5^n=5^n.\left(5-4\right)=5^n.1=5^n\)
Bài làm :
\(5^{n+1}-4.5^n\)
\(=5^n.5-4.5^n\)
\(=5^n.\left(5-4\right)\)
\(=5^n.1\)
\(=5^n\)
Học tốt
Rút gọn biểu thức:
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(5^{n+1}-4.5^n\)
Ta có: \(5^{n+1}-4.5^n=5^n.5-4.5^n=\left(5-4\right)5^n=5^n\)
CHÚC BẠN HỌC TỐT.........
a) 3x\(^n\) (6x\(^{n-3}\)+1) - 2x\(^n\) ( 9x\(^{n-3}\) - 1)
= 18x\(^{n-2}\) + 3x\(^n\) - 18x\(^{n-2}\) + 2x\(^n\)
= 5x\(^n\)
b) 5\(^{n+1}\) - 4.5\(^n\)
= 5\(^n\) . ( 5-4) = 5\(^n\)