trong mặt phẳng tọa độ oxy cho parabol (p) y=x^2 và hai đường thẳng (d): y=m; (d'):y=m^2 (với 0<m<1). Đường thẳng (d) cắt parabol (P) tại hai điểm A,B; đường thẳng (d') cắt parabol (P) tại hai điểm phân biệt C,D (với hoành độ điểm A và D là số âm). Tìm m sao cho diện tích hình thang ABCD gấp 9 lần diện tích tam giác OCD
Cho tam giác nhọn ABC (BC>CA>AB) nội tiếp (O) và trực tâm H. Đường tròn ngoại tiếp tam giác BHC cắt tia phân giác góc ABC tại điểm thứ hai M. Gọi P là trực tâm tam giác BCM.
a) CM 4 điểm A,B,C,P cùng thuộc 1 đường tròn.
b) Đường thẳng H // với AO cắt BC tại E. Gọi F là điểm trên cạnh BC sao cho CF=BE. CM 3 điểm A,F,O thẳng hàng.
c) Gọi N là tâm đường tròn ngoại tiếp tam giác ABM. CM PN=PO.