tìm x để ct sau có nghĩa
\(a,\sqrt{9x^2}=2x+1\\ b,\sqrt{x^4}=7\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Tìm x để ct sau có nghĩa:
\(a,\sqrt{x}=4\\ b,\sqrt{x}=\sqrt{7}\\ c,\sqrt{x}< \sqrt{3}\)
\(a,\sqrt{x}=4\\ \Leftrightarrow x=4^2\\ \Leftrightarrow x=16\\ b,\sqrt{x}=\sqrt{7}\\ \Leftrightarrow\sqrt{\left(x\right)^2}=\sqrt{\left(7\right)^2}\\ \Leftrightarrow x=7\\ c,\sqrt{x}< \sqrt{3}\\ \Leftrightarrow\sqrt{\left(x\right)^2}< \sqrt{\left(3\right)^2}\\ \Leftrightarrow x< 3\\ \Leftrightarrow0\le x< 3\)
1a)\(\sqrt{x+8-6\sqrt{x-1}=4}\)
b)\(\sqrt{9x-9}+\sqrt{4x-4}-2\sqrt{x-1}=3\sqrt{2x+1}\)
c)\(\sqrt{x-2}-x+5\sqrt{9x-18}=15\sqrt{x-2}-2\)
2)Tìm x thuộc Z ĐỂ BIỂU THỨC SAU NHẬN GIÁ TRỊ NGHUYÊN
\(A=\frac{X+7\sqrt{x}+12}{X+\sqrt{x}-6}\)
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
Tìm điều kiện của x để căn thức sau có nghĩa
a) $\sqrt{2x+10}$ +1/(x^2-4)
b) $\sqrt{\frac{x^2+1}{x-1}}$
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
Tìm x để biểu thức A=\(\sqrt{9x-6}-\dfrac{2022}{2x-1}\)có nghĩa
ĐKXĐ: \(\left\{{}\begin{matrix}9x-6>=0\\2x-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\x< >\dfrac{1}{2}\end{matrix}\right.\)
ĐKXĐ
\(\left\{{}\begin{matrix}9x-6\ge0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9x\ge6\\2x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
Cho biểu thức sau: \(P=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
Tìm điều kiện để P có nghĩa và rút gọn P
Ôn Tập Cơ Bản
1) Tìm điều kiện để các biểu thức sau có nghĩa:
a) \(\sqrt{11-2x}\)
b) \(\sqrt{9x-18}\)
c) \(\sqrt{\dfrac{3}{x^2}}\)
d) \(\sqrt{\dfrac{5}{x-7}}\)
2) Rút gọn:
a) \(\sqrt{16x^2}-2x^2\) với x \(\ge\) 0
b) \(\sqrt{9\left(x+5\right)^2}+2-3x\) với x
c) \(\sqrt{\left(x-5\right)^2}-4x\) với x < 5
\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)
Bài 2:
a: \(\sqrt{16x^2}-2x^2=4x-2x^2\)
c: \(\sqrt{\left(x-5\right)^2}-4x=5-4x-x=5-5x\)
B=\(\frac{x-\sqrt{x}}{x-\sqrt{4x}}+\frac{x-9}{2x-\sqrt{25x}-3}\frac{6x-7}{2x-\sqrt{9x}-2}\)
a) rút gọn
b)tìm x để B<1