Tìm GTNN
E=3x^2-6x+15
F= 5x^2+6x-12
G=4x^2-4x+25
H=9x^2+6x^2+4
Tính GTNN của bt
a/\(9x^2-6x+5\)
b/\(4x^2-5x\)
c/\(3x^2-6x\)
d/\(5x^2-15x\)
e/x2 + 3x + 4
f/ 2x2 - 4x + 7
g/2x2 - 3x
h/3x2 -4x
a, \(A=9x^2-6x+5\)
\(=\left(9x^2-6x+1\right)+4\)
\(=\left(3x-1\right)^2+4\)
ta có:
\(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\forall x\)
Vậy Min A = 4
Để A = 4 thì \(3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(b,B=4x^2-5x\)
\(=\left(4x^2-5x+\dfrac{25}{16}\right)-\dfrac{25}{16}\)
\(=\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\)
TA có:
\(\left(2x-\dfrac{5}{4}\right)^2\ge\forall x\Rightarrow\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\ge-\dfrac{25}{16}\forall x\)Vậy Min B = \(-\dfrac{25}{16}\)
Để B = \(-\dfrac{25}{16}\) thì \(2x-\dfrac{5}{4}=0\Rightarrow2x=\dfrac{5}{4}\Rightarrow x=\dfrac{5}{8}\)
\(c,C=3x^2-6x\)
\(=3\left(x^2-2x+1\right)-3\)
\(=3\left(x-1\right)^2-3\)
Ta có:
\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-3\ge-3\)
vậy Min C = -3
Để C = -3 thì x-1=0 => x = 1
\(d,D=5x^2-15x\)
\(=5\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{45}{4}\)
\(=5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\)
Ta có:
\(5\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)Vậy Min D = \(-\dfrac{45}{4}\)
Để \(D=-\dfrac{45}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(e,E=x^2+3x+4\)
\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
Vậy Min E = \(\dfrac{7}{4}\) khi \(x+\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(f,F=2x^2-4x+7\)
\(=2\left(x^2-2x+1\right)+5\)
\(=2\left(x-1\right)^2+5\ge5\forall x\)
Vậy Min F = 5 khi x - 1 =0 => x = 1
\(g,2x^2-3x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{8}\)
\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\forall x\)
Vậy Min G = \(\dfrac{-9}{8}\) khi \(x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)
\(h,H=3x^2-4x=3\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}\)
\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)
Vậy Min H = \(-\dfrac{4}{3}\) khi \(x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
Tìm MIN, MAX
A=x^2-4x+10
B=(1-x).(3x+4)
C=3x^2-9x+5
D= - 2x^2+5x+2
E=-3x^2-6x+5
F=x^4-2x^2+3
G=(x^2+2)^2-3
H=x^2+y^2-6x+4y+12
Bài 1:Phân tích đa thức thành nhân tử
a)x^2-6x+8
b)x^2+4x+3
c)4x^2+4x-3
d)x^2-x-12
e)x^2-5x+6
f)x^2-5x-14
g)4x^2-3x-1
h)3x^2-2x-5
i)9x^2-6x+1
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$
4x(5x − 2) 7x Ä 3x 2 − 6x + 2ä b) c) 2x(3x + 2) + (4x + 3)(2x − 1) 3x 3 y 2 : x 2 d) Ä x 3 + 4x 3 − 6x 2 ä : 4x 2 e) Ä 3x 2 − 6x ä f) : (2 − x) Ä 6x 2 + 13x − 5 ä g) : (2x + 5) Ä x 3 − 3x 2 + x − 3 ä h) : (x − 3)
Tìm GTNN
\(A=x^2-2x+5\)
\(B=4x^2+4x+3\)
\(C=9x^2-6x+7\)
D\(=5x^2+3x+8\)
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
- A = (x-1)2 + 4 \(\ge4\)
Dấu "=" <=> x = 1
- B = (2x+1)2 +2 \(\ge2\)
Dấu "=" xảy ra <=> x = \(\dfrac{-1}{2}\)
- C = (3x - 1)2 + 6 \(\ge6\)
Dấu "=" <=> x = \(\dfrac{1}{3}\)
- D = \(5\left(x^2+\dfrac{3}{5}x+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
Dấu "=" <=> x = \(\dfrac{-3}{10}\)
a, x+15=20-4x
b,17-x=7-6x
c,-12+x=5x-20
d,4x-5=15-x
e,9x-7=20-6x
g,2.(x-10=3.(x-20=x-4
h,(x^2+2).(x-3) <0
a) x+15 = 20-4x
=> x=1
b) 17-x=7-6x
=> x=-2
c) -12+x=5x-20
=> x=2
d) 4x-5=15-x
=> x=4
e) 9x-7=20-6x
=>x= \(\frac{9}{5}\)
g)2.(x-10)=3.(x-20)=x-4
=> x thuộc ∅
h) (x^2+2).(x-3) <0
=> x=3,...
Tìm Min (GTNN) (DẠNG TOÁN ÁP DỤNG HÀNG ĐẲNG THỨC ĐỂ TÌM GTLN,GTNN)
A= x mũ 2 - 6x + 10
B= 4x mũ 2 - 4x + 25
C= 3x mũ 2 + 9x + 12
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
Tìm bt lớn nhất hay nhỏ nhất nếu có của các bt sau:
a) x^2 + x + 2/3
b)9x^2 - 2x - 1/3
c)5x^2 - 2x + 1
d)-x^2 + 3x - 1
e)-4^2 - 6x + 3
f)-3x^2 + 4x - 1/2
g)x^2 + 2x - 1
h)x^2 - 6x + 9
i)4x^2 - 2x
a) Ta có : \(x^2+x+\frac{2}{3}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)
Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)