Tìm
Min Q=\(\dfrac{x^2-3x+3}{\left(x-1\right)^2}\forall x\ne1\)
Tìm
Min Q = \(\dfrac{x^2-3x+3}{\left(x-1\right)^2}\) ∀ \(x\ne1\)
\(Q=\dfrac{x^2-3x+3}{\left(x-1\right)^2}\)
\(Q=\dfrac{x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{3}{4}}{\left(x-1\right)^2}\)
\(Q=\dfrac{\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}}{\left(x-1\right)^2}\)
Để Q có GTNN
=> \(\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)phải lớn nhất và (x-1)^2 phải bé nhất
Tìm hàm số f(x) thỏa mãn
a)\(f\left(x-1\right)+3f\left(\dfrac{1-x}{1-2x}\right)=1-2x,\forall x\ne\dfrac{1}{2}\)
b)\(f\left(x\right)+f\left(\dfrac{1}{1-x}\right)=x+1-\dfrac{1}{x},\forall x\ne0;x\ne1\)
c) \(3f\left(x\right)-2f\left(f\left(x\right)\right)=x,\forall x\in Z\)
Cho biểu thức:
\(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\left(x\ne1\right)\)
a) Rút gọn biểu thức \(A\).
b) Tìm \(x\) dể biểu thức \(A\) có giá trị nguyên.
a: \(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\)
\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{x^4+2x^2+1-x^2}-\dfrac{x^2+3}{x^2\left(x-1\right)+3\left(x-1\right)}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x^2-x+1\right)}{\left(x^2+1\right)^2-x^2}-\dfrac{x^2+3}{\left(x-1\right)\left(x^2+3\right)}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{\left(x^2+1+x\right)\left(x^2+1-x\right)}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x^2+x+1}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)
\(=\dfrac{2x^2+3+x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{1}\)
\(=\dfrac{x^2+1}{x^2+x+1}\)
b: Để A là số nguyên thì \(x^2+1⋮x^2+x+1\)
=>\(x^2+x+1-x⋮x^2+x+1\)
=>\(x⋮x^2+x+1\)
=>\(x^2+x⋮x^2+x+1\)
=>\(x^2+x+1-1⋮x^2+x+1\)
=>\(-1⋮x^2+x+1\)
=>\(x^2+x+1\in\left\{1;-1\right\}\)
=>\(x^2+x+1=1\)
=>x2+x=0
=>x(x+1)=0
=>\(x\in\left\{0;-1\right\}\)
Cho đa thức \(F\left(x\right)=\dfrac{2^{2x+1}}{2^{2x}-2}\left(x\ne\dfrac{1}{2}\right)\)
a)CMR:\(P\left(k\right)+P\left(1-k\right)=2\left(\forall k\ne1\right)\)
b)Tính GT của BT:\(A=2009+P\left(\dfrac{1}{2009}\right)+P\left(\dfrac{2}{2009}\right)+...+P\left(\dfrac{2008}{2009}\right)\)
F(x) = \(\left\{{}\begin{matrix}\dfrac{x^3-x^2+2x-2}{x-1}\left(x\ne1\right)\\3x+m\left(x=1\right)\end{matrix}\right.\)
Tại x0=1. Tìm m để hàm số liên tục tại x0=1
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2+2\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x^2+2\right)=3\)
\(f\left(1\right)=3.1+m=m+3\)
Hàm số liên tục tại \(x_0=1\) khi và chỉ khi \(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\)
\(\Rightarrow m+3=3\Rightarrow m=0\)
chứng minh rằng :
a, x+2y+\(\dfrac{25}{x}\)+\(\dfrac{27}{y^2}\)\(\ge\) 19 ( \(\forall\)x,y \(\)> 0 )
b, \(x+\dfrac{1}{\left(x-y\right)y}\ge3\) ( \(\forall\)x>y>0 )
c,\(\dfrac{x}{2}+\dfrac{16}{x-2}\ge13\left(\forall x>2\right)\)
d, \(a+\dfrac{1}{a^2}\ge\dfrac{9}{4}\left(\forall x\ge2\right)\)
e, a+\(\dfrac{1}{a\left(a-b\right)^2}\ge2\sqrt{2}\) ( \(\forall x>y\ge0\))
f, \(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3[\forall a\ge\dfrac{1}{2};\dfrac{a}{b}>1]\)
g, x+\(\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\left(\forall x>y\ge0\right)\)
h, \(2a^4+\dfrac{1}{1+a^2}\ge3a^2-1\)
tìm m để hàm số liên tục trên R
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{3x^2-3x}{x-1}\\mx+1\end{matrix}\right.\) khi \(x\ne1\); khi \(x=1\)
Khi \(x\ne1\) thì \(f\left(x\right)=\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\) hoàn toàn xác định
nên f(x) liên tục trên các khoảng \(\left(-\infty;1\right);\left(1;+\infty\right)\)(1)
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{3x^2-3x}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{3x\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}3x=3\cdot1=3\)
\(f\left(1\right)=m\cdot1+1=m+1\)
Để hàm số liên tục trên R thì hàm số cần liên tục trên các khoảng sau: \(\left(-\infty;1\right);\left(1;+\infty\right)\) và liên tục luôn tại x=1(2)
Từ (1),(2) suy ra để hàm số liên tục trên R thì hàm số cần liên tục tại x=1
=>\(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)
=>m+1=3
=>m=2
Cho hs
\(f\left(x\right)=-\dfrac{mx^3}{3}+3x^2-mx+1\)
tìm m để
a) \(f'\left(x\right)\le0,\forall x\in R\)
b) pt\(f'\left(x\right)=0\) có 2 nghiệm âm phân biệt
*Thực hiện phép tính*
a) \(3x\left(5x^2-2x-1\right)\)
b)\(\left(x^2-2x+1\right):\left(x-1\right)\) với \(x\ne1\)
c)\(\dfrac{x^2-x}{x-1}+\dfrac{x-1}{1-x}\) với \(x\ne1\)
d)\(\dfrac{x^2-10x+25}{x^2-5x}:\dfrac{x}{x-5}\) với \(x\ne0;x\ne5\)
Tớ làm lôn nheé , không chép lại đề đâu
a) 15x3 - 6x2 - 3x
b) ĐKXĐ: x # 1
( x - 1)2 . \(\dfrac{1}{x-1}\)
= x - 1
c) ĐKXĐ: x # 1\(\dfrac{x^2-x-x+1}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\)
d)ĐKXĐ : x # 0 ; x # 5
\(\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}.\dfrac{x-5}{x}=\dfrac{\left(x-5\right)^2}{x^2}\)