Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hương Giang
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 12:34

a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)

\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)

b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)

Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 12:48

a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)

\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)

\(=2\sqrt{2}\)

b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)

\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)

=16-5=11

....
Xem chi tiết
Yeutoanhoc
24 tháng 6 2021 lúc 10:15

`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`

`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`

`=root{3}{4(1-sqrt3)(1+sqrt3)}`

`=root{3}{4(1-3)}=-2`

`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`

`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`

`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`

`=root{3}{9}`

Yeutoanhoc
24 tháng 6 2021 lúc 10:04

`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`

`=root{3}{(8sqrt5-16)(8sqrt5+16)}`

`=root{3}{320-256}`

`=root{3}{64}=4`

`b)root{3}{7-5sqrt2}-root{6}{8}`

`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`

`=root{3}{(1-sqrt2)^3}-sqrt2`

`=1-sqrt2-sqrt2=1-2sqrt2`

 

....
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 6 2021 lúc 17:15

\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)

\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)

\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)

\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)

Lương Ngọc Anh
Xem chi tiết
YangSu
22 tháng 6 2023 lúc 16:55

\(I=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)

\(=\left(2\sqrt{3}-5\sqrt{3}.\sqrt{3^2}+2\sqrt{2^2}.\sqrt{3}\right):\sqrt{3}\)

\(=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)

\(=-5\sqrt{3}.\dfrac{1}{\sqrt{3}}\)

\(=-5\)

\(K=\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)

\(=\sqrt{5^2.5}-4\sqrt{3^2.5}+3\sqrt{2^2.5}-\sqrt{4^2.5}\)

\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)

\(=\sqrt{5}.\left(5-12+6-4\right)\)

\(=-5\sqrt{5}\)

\(L=2\sqrt{9}+\sqrt{25}-5\sqrt{4}\)

\(=2\sqrt{3^2}+\sqrt{5^2}-5\sqrt{2^2}\)

\(=2.3+5-5.2\)

\(=1\)

\(N=2\sqrt{32}-5\sqrt{27}-4\sqrt{8}+3\sqrt{75}\)

\(=2.4\sqrt{2}-5.3\sqrt{3}-4.2\sqrt{2}+3.5\sqrt{3}\)

\(=8\sqrt{2}-8\sqrt{2}-15\sqrt{3}+15\sqrt{3}\)

\(=0\)

\(O=2\sqrt{3.5^2}-3\sqrt{3.2^2}+\sqrt{3.3^2}\)

\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)

\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)

\(=7\sqrt{3}\)

Nguyễn Lê Phước Thịnh
22 tháng 6 2023 lúc 16:50

\(L=\dfrac{2\sqrt{3}-15\sqrt{3}+8\sqrt{3}}{\sqrt{3}}=2-15+8=-5\)

\(K=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

L=2*3+5-5*2=5-4=1

N=8căn 2-8căn2-15căn3+15căn 3=0

O=10căn 3-6căn3+3căn3=7căn 3

Thị Thanh Nguyễn
Xem chi tiết
Vo Thanh Anh
29 tháng 6 2018 lúc 8:07

A= \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\)\(1+\sqrt{7}+\sqrt{7}-1=2\sqrt{7}\)

\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

=\(\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=\)\(\sqrt{5}+2+\sqrt{5}-2=2\sqrt{5}\)

Oriana.su
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 22:25

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

DŨNG
Xem chi tiết
Nguyễn Ngọc Huy Toàn
9 tháng 5 2022 lúc 20:43

\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\left|\sqrt{5}+2\right|+\left|\sqrt{5}-2\right|\)

\(B=\sqrt{5}+2+\sqrt{5}-2\)

\(B=2\sqrt{5}\)

 

Nguyễn Ngọc Huy Toàn
9 tháng 5 2022 lúc 20:50

\(A=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{12}-\sqrt{6}}{2\sqrt{2}-2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\sqrt{6}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=-\sqrt{6}.\dfrac{1}{\sqrt{6}}\)

\(A=-1\)

 

 

Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:28

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

Sách Giáo Khoa
Xem chi tiết
ngonhuminh
10 tháng 5 2017 lúc 1:29

\(A=-\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+....-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}\)

\(A=\sqrt{9}-\sqrt{1}=3-1=2\)