Cho \(x+y=1\). Chứng minh rằng: \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)=-1\).
Bài 1:Cho x+y=3. Tính:
\(x^2+y^2+2xy-4x-4y+1\).
Bài 2: Chứng minh rằng:
\(x^4+y^4+\left(x+y\right)^4+2\left(x^2+xy+y^2\right)^2\)
Bài 3: Cho (a+b+c)\(^2\) = 3.(a\(^2\)+\(b^2+c^2\)). Chứng minh rằng: a=b=c.
Thôi em không cần bài này nữa đâu mọi người :) em biết làm rồi :) //chờ mãi chả ai làm giúp :(( buồn mọi người ghia ớ :'( //
1) Cho x>y và xy=1. Chứng minh rằng \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
2) Cho xy>1 Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)
1) Biến đồi tương đương:
\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)
2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)
t ko xét dấu đẳng thức đâu, xấu lắm (ở bài 1), nên you tự xét:D
Cho \(x^2-y=a,y^2-z=b,z^2-x=c\)\(c\) ( a , b , c là các hằng số ) Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến x , y , z :
P = \(^{x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)}\)
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
1. Chứng minh rằng: \(x^3+y^3+z^3=1996^2\) không có nghiệm nguyên.
2. Tìm tất cả các số nguyên dương x, y > 1 sao cho \(2xy-1⋮\left(x-1\right)\left(y-1\right)\)
Cho x>0,y<0 và x+y=1/ Rút gọn biểu thức:
\(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{x^2-y^2}\right]\)
Chứng minh rằng A<-4
chắc =1 đó chỉ cần đọc kĩ đề thôi
Bài 1:
a, Cho ba số x,y,z đôi một khác nhau. Chứng minh rằng:
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
mình nghĩ ra cách này ko biết đúng hay sai, nhưng mình sẽ cm cho bạn xem trước cái này để mình đảo lại trong quá trình làm bài luôn cho đỡ mất thời gian
\(\dfrac{1}{x-y}-\dfrac{1}{x-z}=\dfrac{x-z-x+y}{\left(x-y\right)\left(x-z\right)}=\dfrac{\left(y-z\right)}{\left(x-y\right)\left(x-z\right)}\)
thế nên sẽ đảo ngược lại trong bài này, vây ta sẽ có
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{1}{x-y}-\dfrac{1}{x-z}\\ \dfrac{z-x}{\left(y-z\right)\left(x-y\right)}=\dfrac{1}{y-z}-\dfrac{1}{x-y}\\ \dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{1}{z-x}-\dfrac{1}{y-z}\)
thay vào đề bài ta được
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}\\ =\dfrac{1}{x-y}-\dfrac{1}{x-z}+\dfrac{1}{y-z}-\dfrac{1}{y-x}+\dfrac{1}{z-x}-\dfrac{1}{y-x}\\ =\dfrac{1}{x-y}+\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{y-z}+\dfrac{1}{z-x}+\dfrac{1}{z-x}\\ =\dfrac{2}{x-y}+\dfrac{2}{y-x}+\dfrac{2}{z-x}\left(đpcm\right)\)
vậy ...
mình nghĩ ra thì là như z, chúc may mắn :)
Chứng minh rằng: \(\left[x\left(y+1\right)^n-y\left(x+1\right)^n-x+y\right]⋮\left[xy\left(x-y\right)\right]\)
M.n làm ơn giúp mink nha, cảm ơn!!!!
Chứng minh rằng với mọi số nguyên x,y thì:
a) \(x\left(x^2-2x\right)+\left(x-2x\right)\) chia hết cho x - 2
b) \(x^3y^2-3yx^2+xy\) chia hết cho xy
c) \(x^3y^2-3x^2y^3+xy^2\) chia hết cho \(x^2-3xy+1\)
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
Chứng minh rằng
\(x\left(x+1\right)^4+x\left(x+1\right)^3+x\left(x+1\right)^2+\left(x+1\right)^2=\left(x+1\right)^5\)
Ta có:
\(x\left(x+1\right)^4+x\left(x+1\right)^3+x\left(x+1\right)^2+\left(x+1\right)^2\)
\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^2.\left(x+1\right)\)
\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^3\)
\(=x\left(x+1\right)^4+\left(x+1\right)^3\left(x+1\right)\)
\(=x\left(x+1\right)^4+\left(x+1\right)^4=\left(x+1\right)^4\left(x+1\right)=\left(x+1\right)^5\)