Bài 1. Giải phương trình :
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
Bài 2. Tìm tất cả các bộ 3 số nguyên không âm (x ; y; z) thoả mãn đẳng thức :
\(2012^x+2013^y=2014^z\)
Bài 3. Cho phương trình bậc hai : \(x^2+\left(m+n\right)+m+1=0\) với m và n là các số nguyên trong đó \(m\ne1\).
a) Chứng minh rằng : Với mọi giá trị của m, luôn có 1 giá trị của n không đổi để phương trình đã cho có nghiệm x nguyên.
b) Chứng minh rằng : Khi phương trình đã cho có hai nghiệm nguyên thì \(\left(m+n\right)^2+m^2\) là hợp số.
HELP MEEEEEEEEEEEEEEEE !!! PLEASE !!!
1. Cho x, y là các số hữu tỉ thoả mãn \(x^2+y^2+\left(\dfrac{xy+1}{x+y}\right)^2=2\).
Chứng minh rằng \(\sqrt{1+xy}\) là 1 số hữu tỉ .
2. Tìm tất cả các bộ ba số nguyên dương (x, y, z) thoả mãn \(\dfrac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỉ đồng thời \(x^2+y^2+z^2\) là số nguyên tố.
Cho các số dương a,b,c tm a+2b+3c=1. Chứng minh rằng ít nhất 1 trong 3 pt sau có nghiệm:
\(4x^2-4\left(2a+1\right)x+4a^2+192abc+1=0\left(1\right)\);\(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\left(2\right)\)
Đây ạNguyễn Việt Lâm
1Cho x,y,z >0 và xy+yz+zx=1. Chứng minh rằng \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2^x\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\) 2 Cho p,q là hai số nguyên tố thoả mãn \(p-1⋮p\) và \(p^3-1p⋮\) Chứng minh rằng p+q là số chính phương
Chứng minh rằng với mọi n nguyên dương ta có: \(\frac{1}{2}+\frac{1}{3\sqrt[3]{2}}+...+\frac{1}{\left(X+1\right)\sqrt[3]{X}}\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Cho x, y, z là các số thực bất kì. Chứng minh rằng:
a) \(\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\ge\left(xy+yz+zx-1\right)^2\)
b) \(\left(x^2+2\right)\left(y^2+2\right)\left(z^2+2\right)\ge3\left(x+y+z\right)^2\)
c) \(\left(x^3+3\right)\left(y^3+3\right)\left(z^3+3\right)\ge4\left(x+y+z+1\right)^2\)
cho x,y,z là các số thực dương , thỏa mãn : xy+yz+zx=xyz
Chứng minh rằng \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{1}{16}\)
a) Cho 3 số không âm x, y, z thỏa mãn: \(x^2+y^2+z^2=1\) . Tìm min: \(M=x+y+z-3\)
b) Cho 2 số dương x, y thỏa mãn: \(\left(\sqrt{x}+1\right).\left(\sqrt{y}+1\right)\ge4\) .Tìm min: \(P=\frac{x^2}{y}+\frac{y^2}{x}\)