Cho x,y,z là số thưc dương
\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=1,5\)
Tính \(x^2+y^2+z^2\)
cho x,y,z là số dương thỏa mãn x+y+z ≤3 tìm giá trị lớn nhất của biểu thức
P=\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Ta có:
\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{\left(1+1\right)\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)
Tương tự:
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\) ; \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
Cộng vế:
\(P\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\left(x+y+z\right)\le\sqrt{2}\left(3+3\right)+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
\(P_{max}=6+3\sqrt{2}\) khi \(x=y=z=1\)
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{1}{\sqrt{x}+3\sqrt{y}}+\frac{1}{\sqrt{y}+3\sqrt{z}}+\frac{1}{\sqrt{z}+3\sqrt{x}}\ge\frac{1}{\sqrt{x}+2\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{y}+2\sqrt{z}+\sqrt{x}}+\frac{1}{\sqrt{z}+2\sqrt{x}+\sqrt{y}}\)
Cho x, y, z là 3 số thực dương và x + y + z ≤ 1. CMR:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{82}\)
\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)
\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)
\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)
\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)
\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)
\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)
1) Cho các số thực dương x,y,z thỏa mãn điều kiện x\(\sqrt{2020-y^2}\) + y\(\sqrt{2020-z^2}\) +z\(\sqrt{2023-x^2}\)=3030. Tính giá trị vủa biểu thức A=x\(^2\)+\(y^2\)+\(z^2\)
Lời giải:
Áp dụng BĐT AM-GM:
\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\leq \frac{x^2+(2020-y^2)}{2}+\frac{y^2+(2020-z^2)}{2}+\frac{z^2+(2020-x^2)}{2}=3030\)Dấu "=" xảy ra khi:
\(\left\{\begin{matrix} x^2=2020-y^2\\ y^2=2020-z^2\\ z^2=2020-x^2\end{matrix}\right.\Rightarrow x=y=z=\sqrt{1010}\)
Khi đó:
$A=3(\sqrt{1010})^2=3030$
cho các số dương X,Y,Z thỏa mãn :x\(^3\)+Y\(^3\)+Z\(^3\)=1
chứng minh rằng; \(\dfrac{X^2}{\sqrt{1-X^2}}\)+\(\dfrac{Y^2}{\sqrt{1-Y^2}}\)+\(\dfrac{Z^2}{\sqrt{1-Z^2}}\)\(\ge\)2
Đề bài chắc chắn là có vấn đề
Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)
Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra
Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)
Làm tương tự với 2 số hạng còn lại, sau đó cộng vế
Nhưng đẳng thức không xảy ra.
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
\(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow ab+bc+ca=2020\)
BĐT trở thành:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)
\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)
\(\Leftrightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020^2}{abc}\)
Ta có: \(\sqrt{2020+a^2}=\sqrt{ab+bc+ca+a^2}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{1}{2}\left(2a+b+c\right)\)
Tương tự:...
\(\Rightarrow\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le2\left(a+b+c\right)\)
\(\Rightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le3\left(a+b+c\right)\)
Nên ta chỉ cần chứng minh:
\(3\left(a+b+c\right)\le\dfrac{2020^2}{abc}=\dfrac{\left(ab+bc+ca\right)^2}{abc}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (hiển nhiên đúng)
Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)
Cho x,y,x là các sô thực dương. CMR \(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$Khi đó BĐT đã cho trở thành:$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$Mặt khác ta có:$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$
CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$Từ $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$
Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:
$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$
$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$
$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$
Khi đó BĐT đã cho trở thành:
$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$
Mặt khác ta có:
$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$
CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$
Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$
Từ $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$
Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$
Cho 3 số dương x,y,z. CMR:\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}>=3\left(\dfrac{1}{\sqrt{x}+2\sqrt{y}}+\dfrac{1}{\sqrt{y}+2\sqrt{z}}+\dfrac{1}{\sqrt{z}+2\sqrt{x}}\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)
Tương tự cho 2 BĐT trên ta có:
\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)
Xảy ra khi \(x=y=z\)
cho x,y,z,t là các số dương và \(\sqrt{x}\)+\(\sqrt{y}\)+\(\sqrt{z}\)+\(\sqrt{t}\)=4
chứng minh rằng: \(\dfrac{\sqrt{x}}{1+y}\)+\(\dfrac{\sqrt{y}}{1+z}\)+\(\dfrac{\sqrt{z}}{1+t}\)+\(\dfrac{\sqrt{t}}{1+x}\)\(\ge\)2