Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2018 lúc 5:01

Lưu ý: Vì x không âm (x ≥ 0) nên các căn thức trong bài đều xác định.

a)  √ x   =   15

Vì x ≥ 0 nên bình phương hai vế ta được:

x   =   15 2   ⇔   x   =   225

Vậy  x   =   225

b)  2 √ x   =   14   ⇔   √ x   =   7

Vì x ≥ 0 nên bình phương hai vế ta được:

x   =   7 2   ⇔   x   =   49     V ậ y   x   =   49

c) √x < √2

Vì x ≥ 0 nên bình phương hai vế ta được: x < 2

Vậy 0 ≤ x < 2

d)  2 x < 4

Vì x ≥ 0 nên bình phương hai vế ta được:

2x < 16 ⇔ x < 8

Vậy 0 ≤ x < 8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 12 2017 lúc 17:09

Giải bài tập Toán 9 | Để học tốt Toán 9

Vì x ≥ 0 nên bình phương hai vế ta được:

2x < 16 ⇔ x < 8

Vậy 0 ≤ x < 8

Hạ Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2023 lúc 22:45

a: \(x\left(1-2x\right)+2x^2=14\)

=>\(x-2x^2+2x^2=14\)

=>x=14

b: \(x\left(x-5\right)+3x-15=0\)

=>\(\left(x-5\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

trunghoc1
Xem chi tiết
Thuỳ Dương
1 tháng 10 2021 lúc 13:41

a) x=3 y=13

x=16 y=0

x=4 y=5

x=9 y=1

    

Kim Khánh Linh
Xem chi tiết
༺༒༻²ᵏ⁸
13 tháng 4 2021 lúc 22:32

Em mới lớp 7 nên em chỉ làm những câu em biết thôi nhé:

\(a,\sqrt{x}=15\)

\(\Rightarrow x=15^2\)

\(\Rightarrow x=225\)

\(b,2\sqrt{x}=14\)

\(\sqrt{x}=14:2\)

\(\sqrt{x}=7\)

\(x=7^2\)

\(x=49\)

\(c,\sqrt{x}< \sqrt{2}\)

\(\Rightarrow x< 2\)

Còn ý d em không biết làm ạ ! 

Khách vãng lai đã xóa
Tạ Yên Nhi ( ✎﹏IDΣΛ亗 )
13 tháng 4 2021 lúc 22:43

\(a)\sqrt{x}=15\)

\(x\ge0\) nên bình phương hai vế ta được:

\(x=15^2\Leftrightarrow x=225\)

Vậy \(x=225\)

\(b)2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)

Vì  \(x\ge0\) nên bình phương hai vế ta được:

\(x=7^2\Leftrightarrow x=49\)

Vậy \(x=49\)

\(c)\sqrt{x}< \sqrt{2}\)

\(x\ge0\) nên bình phương hai vế ta được: \(x< 2\)

Vậy \(0\le x\le2\)

\(d)\sqrt{2x}< 4\)

Vì \(x\ge0\)nên bình phương hai vế ta được:

\(2x< 16\Leftrightarrow x< 8\)

Vậy \(0\le x< 8\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
14 tháng 4 2021 lúc 5:54

a, \(\sqrt{x}=15\)Do \(x\ge0\)

\(\Leftrightarrow x=225\)Vậy x = 225 

b, \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)do \(x\ge0\)

\(\Leftrightarrow x=49\)Vậy x = 49 

c, \(\sqrt{x}< \sqrt{2}\)do \(x\ge0\)

\(\Leftrightarrow x< 2\)Kết hợp với giả thiết Vậy \(0\le x< 2\)

d, \(\sqrt{2x}< 4\)do \(x\ge0\)

\(\Leftrightarrow2x< 16\Leftrightarrow x< 8\)Kết hợp với giả thiết Vậy \(0\le x< 8\)

Khách vãng lai đã xóa
Luong cong thanh
Xem chi tiết
Nguyễn Nho Bảo Trí
Xem chi tiết
Nguyễn Nho Bảo Trí
6 tháng 6 2021 lúc 21:09

Giúp mình với 

Nguyễn Thị Ngọc Thơ
6 tháng 6 2021 lúc 21:11

a, x = 225

b, x = 49

c, x < 4

Minh Nhân
6 tháng 6 2021 lúc 21:12

\(a.\sqrt{x}=15\)

\(\Leftrightarrow x=15^2=225\)

\(b.2\sqrt{x}=14\)

\(\Leftrightarrow\sqrt{x}=7\)

\(\Leftrightarrow x=7^2=49\)

\(c.22\sqrt{x}< 4\)

\(\Leftrightarrow\sqrt{x}< \dfrac{2}{11}\)

\(\Leftrightarrow x< \left(\dfrac{2}{11}\right)^2\)

\(\Leftrightarrow x< \dfrac{4}{121}\)

tronghieu
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 21:24

a) \(\left(x-2\right)\left(y+1\right)=14\)

Do \(x,y\in N\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=1\\y+1=14\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=14\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+1=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=7\\y+1=2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\left(tm\right)\\y=13\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=16\left(tm\right)\\y=0\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\left(tm\right)\\y=6\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)

 

Minh Hiếu
Xem chi tiết
Trên con đường thành côn...
7 tháng 1 2022 lúc 20:36

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:12

Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.

Bài 4:

Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ

Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.

Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn

\(\Rightarrow q=2\). Lúc này ta có:

\(p^2+2^p=r\)

+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)

+Xét p>3. Ta có:

\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)

\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)

\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số

\(\Rightarrow r\) là hợp số, không phải SNT, loại.

Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài

 

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:22

Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.

Nếu 2n-1 là SCP thì ta có

\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)

Do đó 2n+1 không là SCP

\(\Rightarrowđpcm\)