Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Hồ An
Xem chi tiết
Hồ An
2 tháng 12 2018 lúc 10:56

Đặt a=\(\sqrt{2x^2+5x+12}\)

b=\(\sqrt{2x^2+3x+2}\)

=>a2=2x2+5x+12 và b2=2x2+2x+2

Ta có a+b=x+5. (1)

.a2-b2=2(x+5)

<=>a2-b2=2(a+b)

<=> a-b=2. (2)

Cộng (1) và (2) vế theo vế

ta được 2a=x+7

<=>2\(\sqrt{2x^2+5x+12}\)=x+7

<=>4(2x2+5x+12)=x2+14x+49

<=>7x2+6x-1=0

<=>(x+1)(7x-1)=0

<=>\(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\) vậy pt có 2 nghiệm-1;-\(\dfrac{1}{7}\)

Thành
Xem chi tiết
Buddy
6 tháng 2 2021 lúc 10:47

Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

 
TTTT
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2018 lúc 20:05

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

Bình phương 2 vế:

\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)

\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=-1;x=-5\)

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)

Phương trình trở thành:

\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)

Rimuru tempest
24 tháng 11 2018 lúc 19:55

a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)

\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)

vậy \(S=\left\{-1;-2;-5\right\}\)

Rimuru tempest
24 tháng 11 2018 lúc 20:06

b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{\left(2x+3\right)\left(x+1\right)}-2\)

ĐK \(\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{x+1}=2x+3+2\sqrt{\left(2x+3\right)\left(x+1\right)}+x+1-6\)

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{2x+3}\right)^2-\left(\sqrt{x+1}+\sqrt{2x+3}\right)-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}+\sqrt{2x+3}=3\\\sqrt{x+1}+\sqrt{2x+3}=-2\left(VL\right)\end{matrix}\right.\)

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{2x+3}\right)^2=9\)

\(\Leftrightarrow x+1+2\sqrt{\left(x+1\right)\left(2x+3\right)}+2x+3=9\)

\(\Leftrightarrow2\sqrt{\left(x+1\right)\left(2x+3\right)}=5-3x\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\) (đk \(x\le\dfrac{5}{3}\) )

\(\Leftrightarrow8x^2+20x+12=9x^2-30x+25\)

\(\Leftrightarrow x^2-50x+13=0\)

bấm máy rồi so với đk ra nghiệm nha bạn

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Julian Edward
Xem chi tiết
Aki Tsuki
7 tháng 11 2019 lúc 0:30

a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)

\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)

đặt\(x^2+x+1=t\left(t>0\right)\)

\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)

bình phương 2 vế pt trở thành:

\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)

\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m

vậy pt vô nghiệm

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 0:21

a/ ĐKXĐ: ...

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)

\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)

\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))

\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)

\(\Leftrightarrow11a^2+6a-25=0\)

Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó

b/

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)

\(\Leftrightarrow\sqrt{a^2+3a}=2\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 0:28

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3x^2-5x+7}=3-\sqrt{3x^2-7x+2}\)

\(\Rightarrow3x^2-5x+7=3x^2-7x+11-6\sqrt{3x^2-7x+2}\)

\(\Leftrightarrow3\sqrt{3x^2-7x+2}=2-x\) (\(x\le2\))

\(\Leftrightarrow9\left(3x^2-7x+2\right)=x^2-4x+4\)

\(\Leftrightarrow26x^2-59x+14=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{26}\end{matrix}\right.\)

Do biến đổi ko tương đương nên cần thay lại nghiệm vào pt ban đầu kiểm tra

d/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{x^2+3x+2}+\sqrt{x^2+6x+5}=\sqrt{2x^2+9x+7}\)

\(\Leftrightarrow2x^2+9x+7+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=2x^2+9x+7\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2\left(x+2\right)\left(x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Khách vãng lai đã xóa
oki pạn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 2022 lúc 20:26

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)

Phương trình trở thành:

\(a+b=\dfrac{a^2-b^2}{2}\)

\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))

\(\Leftrightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)

\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)

\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))

\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)

\(\Leftrightarrow7x^2+6x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)

Lê Thu Hiền
Xem chi tiết