1.Làm tính nhân:
a)x2(5x3-x-6)
b)(x2-2xy+y2)(x-y)
2.Viết các đa thức dưới dạng bình phương của 1 tổng hay 1 hiệu:
a)y2+2y+1
b)9x2+y2-6xy
c)25a2+4b2+20ab
d)x2-x+\(\dfrac{1}{4}\)
Viết các đa thức sau dưới dạng bình phương của một tổng hay một hiệu
a. y 2 + 2 y + 1
b. 9 x 2 + y 2 – 6 x y
c. 25 a 2 + 4 b 2 + 20 a b
Bài 6: Viết các biểu thức sau dưới dạng bình phương của một tổng hay một hiệu:
a) x2 + 5x +\(\dfrac{ }{ }\)\(\dfrac{25}{4}\)
b) 16x2 – 8x + 1
c) 4x2 + 12xy + 9y2
d) (x + 3)(x + 4)(x + 5)(x + 6) + 1
e) x2 + y2 + 2x + 2y + 2(x + 1)(y + 1) + 2
g) x2 – 2x(y + 2) + y2 + 4y + 4
h) x2 + 2x(y + 1) + y2 + 2y + 1
này mình có vài câu không làm được, xin lỗi bạn nha
\(b,16x^2-8x+1=\left(4x-1\right)^2\\ c,4x^2+12xy+9y^2=\left(2x+3y\right)^2\\ e,=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\\ =\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\\ =\left[\left(x+1\right)+\left(y+1\right)\right]^2=\left(x+y+2\right)^2\\ g,=x^2-2x\left(y+2\right)+\left(x+2\right)^2=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\\ h,=\left[x+\left(y+1\right)\right]^2=\left(x+y+1\right)^2\)
Viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu:
a) x 2 + 2x + 1; b) -8x + 16 + x 2 ;
c) x 2 4 + x + 1 ; d) 4 x 2 + 4 y 2 – 8xy.
a) ( x + 1 ) 2 . b) ( x – 4 ) 2 .
c) x 2 4 + x + 1 ; d) ( 2 x – 2 y ) 2 .
Bài 10 : Rút gọn các biểu thức
a. A = ( x + 2 ) ( x2 - 2x + 4 ) - x3 + 2
b . B = ( x - 1 ) ( x2 + x + 1 ) - ( x + 1 ) ( x2 - x + 1 )
c. C = ( 2x - y ) ( 4x2 + 2xy + y2 ) + ( y - 3x ) ( y2 + 3xy + 9x2 )
a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(A=x^3+8-x^3+2\)
\(A=10\)
b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(B=x^3-1-\left(x^3+1\right)\)
\(B=x^3-1-x^3-1\)
\(B=-2\)
c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)
\(C=8x^3-y^3+y^3-27x^3\)
\(C=-19x^3\)
a)
\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)
b)
\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)
c)
\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)
Viết các biểu thức sau dưới dạng tổng hoặc hiệu các lập phương
a) (x + 5)( x 2 – 5x + 25); b) (1 – x)( x 2 + x + 1);
c) (y + 3t)(9 t 2 – 3yt + y 2 ); d) 4 − u 2 u 2 4 + 2 u + 16 .
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
bài 1 phân tích các đa thức thành nhân tử
a) x2 - z2 + y2 - 2xy b) a3 - ay - a2x + xy
c) x2 - 2xy + y2 - xz + yz d) x2 - 2xy + tx - 2ty
bài 2 giải các phương trình sau
( x - 2 )2 - ( x - 3 ) ( x+ 3 ) = 6
bài 3 chứng minh rằng
a) x2 + 2x + 2 > 0 với xϵZ
b) -x2 + 4x - 5 < 0 với x ϵ Z
\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)
Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
c. x2+2xy – 9+ y2
d. x2 - y2 -x + y
\(a,x\left(x+6\right)\\ b,\left(9x-1\right)\left(9x+1\right)\\ c,\left(x+y\right)-3^2\\ =\left(x+y-3\right)\left(x+y+3\right)\\ d,\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
1. Rút gọn biểu thức:
a. (2x-3)(4x2+6x+9)-2x(4x2-1)
b.(x+y)2+2(x+y)(x-y)+(x-y)2
2.Phân tích đa thức sau thành nhân tử:
a. 2x2y+4xy+2y c. x2-8x+7
b.9x2+6xy-4z2+y2 d. x3+4x2+x-6
1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x
2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)
b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)
c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)
\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
hk tốt
^^