Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Trần Nam Phương
Xem chi tiết
Nguyễn Việt Anh
Xem chi tiết
Nguyễn Anh Quân
10 tháng 11 2017 lúc 13:14

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

KAl(SO4)2·12H2O
10 tháng 11 2017 lúc 13:09

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

Phạm Tuấn Đạt
10 tháng 11 2017 lúc 13:13

a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

b, với m lẻ từ hằng đẳng thức đáng nhớ ta có 
a^m+b^m=(a+b) {a^(m-1)-[a^(m-2)]b+...-a.[b^(m-2)]+b^(m... chia hết cho a+b 
 

Đinh Đức Hùng
Xem chi tiết
Đinh Đức Hùng
9 tháng 3 2016 lúc 19:38

Ta có :

\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)         

  \(\frac{1}{4^2}=\frac{1}{4.4}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.......................

\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Cộng vế với vế , ta được :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

Vì 99 < 100 nên \(\frac{99}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\left(đpcm\right)\)

Vương Thị Diễm Quỳnh
9 tháng 3 2016 lúc 19:39

1/2^2 < 1/(1.2)= 1-1/2 
1/3^2 <1/(2.3)=1/2-1/3 
1/4^2 <1/(3.4)=1/3-1/4 
...... 
1/100^2 < 1/99-1/100 
cộng vế với vế ta được 1/2^2 +1/3^2+...+1/100^2< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100 

=>1/2^2 +1/3^2+...+1/100^2<1
=> ĐPCM

Nguyễn Hưng Phát
9 tháng 3 2016 lúc 19:40

Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};............;\frac{1}{100^2}<\frac{1}{99.100}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{100^2}\)\(<\frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.............+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}<1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{100^2}<1\)

Lê Thu Hà
Xem chi tiết
Angel My
5 tháng 10 2018 lúc 20:50

a, A= 2 + 22 + 23 +...+ 2100

A= ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )

A= 6+ 22 ( 2+22)+ ...+ 298 (2+22)

A=6+ 22.6+ ...+ 298.6

A= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)

Nguyễn Lê Phước Thịnh
7 tháng 10 2022 lúc 22:35

a: \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{99}\right)⋮3\)

b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)⋮5\)

Uzumaki naruto
Xem chi tiết
Vũ Đạt
26 tháng 2 2016 lúc 15:52

4:3 => tứ chia tam => tám chia tư => 8:4=2

Online Math PBKL5
26 tháng 2 2016 lúc 15:52

4 : 3 = tứ chia tam = tám chia tư = 2

rất rễ hỉu và rất ngắn gọn duyệt mk nha

phamhuechi
26 tháng 2 2016 lúc 15:53

4:3=8:4=2

Xin lỗi  đang còn thiếu nhưng máy tính ở nhà ko viết được

doan thi tuyet
Xem chi tiết
☆MĭηɦღAηɦ❄
10 tháng 11 2017 lúc 20:29

mệt quá

TPA
10 tháng 11 2017 lúc 20:41

a)Ta có:S = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 +...+2^199+ 2^200.

=( 2^1 + 2^2) + (2^3 + 2^4) + (2^5+2^6)+...+(2^197+2^198)+(2^199+2^200).

=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^197.(1+2)+2^199(1+2)

=2.3+2^3.3+2^5.3+...+2^197.3+2^199.3

=3.(2+2^3+2^5+...+2^197+2^199)

Vậy tổng S chia hết cho 3.

Xin lỗi bn,mik o làm kịp

where is perry
10 tháng 11 2017 lúc 20:54

S chia hết cho 3

ta có S = (2+2^2)+(2^3 + 2^ 4)+....+2^199x(1+2)chia hết cho 3

S = 2x(1+2) + 2^3x(1+2)+....+2^199x(1+2)

S=2 x 3+2^3x3+...+2^199 x 3 

Suy ra S chia hết cho 3

Cũng thế ta có

(2+2^2+2^3+2^4)+....+(2^197+2^198+2^199+2^200)=2x15+...+2^197x15vif 15 x bất kì số nào thì sẽ chia hết cho 5

ta gọi các chữ số là tập hợp A

A={5;15;25;35....}

Nguyen Giang
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 10 2021 lúc 18:33

a) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{199}\left(1+3\right)\)

\(=3.4+3^3.4+3^{199}.4=4\left(3+3^3+...+3^{199}\right)⋮4\)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{198}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{198}.13=13\left(3+3^4+...+3^{198}\right)⋮13\)

baro
Xem chi tiết
Kiều Vũ Linh
20 tháng 12 2023 lúc 17:08

Đặt B = 2² + 2³ + 2⁴ + ... + 2²⁰²³

⇒ 2B = 2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴

⇒ B = 2B - B

= (2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴) - (2² + 2³ + 2⁴ + ... + 2²⁰²³)

= 2²⁰²⁴ - 2²

⇒ A = 2² + 2²⁰²⁴ - 2² = 2²⁰²⁴

= 2.2²⁰²³ ⋮ 2²⁰²³

Vậy A ⋮ 2²⁰²³

Akai Haruma
20 tháng 12 2023 lúc 17:02

Lời giải:

$A=4+2^2+2^3+....+2^{2023}$

$2A=8+2^3+2^4+...+2^{2024}$

$\Rightarrow 2A-A=(8+2^3+2^4+...+2^{2024})-(4+2^2+2^3+....+2^{2023})$

$\Rightarrow A=2^{2024}+8-4-2^2=2^{2024}\vdots 2^{2023}$

Ta có đpcm/

hulk0509
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 20:54

\(C=\frac{3-1}{3}+\frac{3^2-1}{3^2}+...+\frac{3^n-1}{3^n}\)

\(=1-\frac{1}{3}+1-\frac{1}{3^2}+...+1-\frac{1}{3^n}\)

\(=1+1+...+1-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)

\(=n-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=n-D\)

\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)

\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow2D=1-\frac{1}{3^n}\Rightarrow D=\frac{1}{2}-\frac{1}{2.3^n}\)

\(\Rightarrow C=n-\left(\frac{1}{2}-\frac{1}{2.3^n}\right)=n-\frac{1}{2}+\frac{1}{2.3^n}>n-\frac{1}{2}\)