Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Hoàng Nhất Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 22:43

=-2(x^2+2x+5)

=-2(x^2+2x+1+4)

=-2(x+1)^2-8<0

nglan
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 21:30

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)

b: \(4y^2+2y+1\)

\(=4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{4}\right)\)

\(=4\left(y^2+2\cdot y\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{3}{16}\right)\)

\(=4\left(y+\dfrac{1}{4}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall y\)

c: \(-2x^2+6x-10\)

\(=-2\left(x^2-3x+5\right)\)

\(=-2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)

\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{11}{2}< =-\dfrac{11}{2}< 0\forall x\)

『Kuroba ム Tsuki Ryoo...
8 tháng 10 2023 lúc 21:36

`#3107.101107`

a)

`x^2 + x + 1`

`= (x^2 + 2*x*1/2 + 1/4) + 3/4`

`= (x + 1/2)^2 + 3/4`

Vì `(x + 1/2)^2 \ge 0` `AA` `x`

`=> (x + 1/2)^2 + 3/4 \ge 3/4` `AA` `x`

Vậy, `x^2 + x + 1 > 0` `AA` `x`

b)

`4y^2 + 2y + 1`

`= [(2y)^2 + 2*2y*1/2 + 1/4] + 3/4`

`= (2y + 1/2)^2 + 3/4`

Vì `(2y + 1/2)^2 \ge 0` `AA` `y`

`=> (2y + 1/2)^2 + 3/4 \ge 3/4` `AA` `y`

Vậy, `4y^2 + 2y + 1 > 0` `AA` `y`

c)

`-2x^2 + 6x - 10`

`= -(2x^2 - 6x + 10)`

`= -2(x^2 - 3x + 5)`

`= -2[ (x^2 - 2*x*3/2 + 9/4) + 11/4]`

`= -2[ (x - 3/2)^2 + 11/4]`

`= -2(x - 3/2)^2 - 11/2`

Vì `-2(x - 3/2)^2 \le 0` `AA` `x`

`=> -2(x - 3/2)^2 - 11/2 \le 11/2` `AA` `x`

Vậy, `-2x^2 + 6x - 10 < 0` `AA `x.`

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 8 2018 lúc 5:04

Đáp án C

Phương trình 

⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0 → t = x 2 + 2 x m t 3 − 2 t + 2 = 0      1

Ta có  f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞

Khi đó 1 ⇔ m = 2 t 2 − 2 t 3 = f t  với  t ∈ 3 ; + ∞

Có f ' t = − 4 t 3 + 6 t 4 ⇒ f t  nghịch biến trên  3 ; + ∞ ⇒ max 3 ; + ∞ f x ≤ f 3 = 4 27

Suy ra m ≤ max 3 ; + ∞ f x = 4 27 ⇒  có vô số nghiệm giá trị của m

Lê Hương Giang
Xem chi tiết
Linh Vũ
Xem chi tiết
Kudo Shinichi
7 tháng 12 2019 lúc 22:26

A=x2-6x+10

A=x2-2*3x+32+1

A=(x-3)2+1

Ta có: (x-3)2> và = 0 với mọi x

Dấu "=" xảy ra=>(x-3)^2=0<=>x-3=0<=>x=3

=>A> và = 1 > 0 với mọi x

Vậy A luôn dương với mọi x

B=4x^2+4x+1+2

B=(2x+1)^2+2

Ta có: (2x+1)^2 > và = 0 với mọi x

Dấu "=" xảy ra<=> (2x+1)^2=0<=>2x+1=0<=>x=-1/2

=>B> và = 2 >0 với mọi x

Vậy B luôn dương với mọi x

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
7 tháng 12 2019 lúc 22:33

a) Đa thức A=x(x-6)+10

Ta có: \(A=x\left(x-6\right)+10\)

\(=x^2-6x+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

hay \(A=x\left(x-6\right)+10>0\forall x\)(đpcm)

b) Đa thức \(B=4x^2-4x+3\)

Ta có: \(B=4x^2-4x+3\)

\(=\left(2x\right)^2-2\cdot2x\cdot1+1+2\)

\(=\left(2x-1\right)^2+2\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

hay \(\left(2x-1\right)^2+2\ge2>0\forall x\)

Vậy: \(B=4x^2-4x+3\)>0\(\forall x\in R\)(đpcm)

Khách vãng lai đã xóa
super xity
Xem chi tiết
Nguyễn T. Như
Xem chi tiết
Trần Thị Băng Tâm
2 tháng 8 2018 lúc 8:43

a) Có x2-6x+10=(x2-2.x.3+32)+1=(x-3)2+1

Vì (x-3)2 ≥0 với mọi x

nên (x-3)2+1>0 với mọi x

b) Có 4x-x2-5=-(x2-4x+4)-1=-(x2-2.x.2+22)-1=-(x-2)2-1

Vì -(x-2)2≤0 với mọi x

nên -(x-2)2-1<0 với mọi x

c)Gỉa sử (x+5)(x-3)+20>0 là đúng thì

⇔x2-3x+5x-15+20>0

⇔x2+2x+5>0 ⇔(x2+2x.1+12)+4>0 ⇔(x+1)2+4>0

Vì (x+1)2 >=0 với mọi x

Nên (x+1)2+4>0 là đúng

Vậy (x+5)(x-3)+20>0 với mọi x

Hoàng Quỳnh
Xem chi tiết
Vũ Nguyễn Hiếu Thảo
5 tháng 9 2017 lúc 20:43

a. \(^{x^2-6x+10>0}\) có \(\left(^{ }x-3\right)^2+1>0\) => điều phải CM

b. -(x^2 -4x+5) = -(x-2)^2 -1 < 0 với mọi x

Đỗ Hàn Thục Nhi
Xem chi tiết
tthnew
28 tháng 6 2019 lúc 8:41

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

Hương Nguyễn Quỳnh
18 tháng 9 2019 lúc 18:14

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x

Hương Nguyễn Quỳnh
18 tháng 9 2019 lúc 20:13

b. x2 + x + 1

= x2 + 2.x.\(\frac{1}{2}\)+ (\(\frac{1}{2}\))2 \(\frac{1}{4}\) + 1

= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Vì (x + \(\frac{1}{2}\))2 ≥ 0 ∀ x ⇒ (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\frac{3}{4}\) ∀ x

Vậy (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) ≥ 0 hay x2 + x + 1 > 0 ∀ x.

ThanhNghiem
Xem chi tiết
Minh Hiếu
15 tháng 9 2023 lúc 20:00

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:59

loading...  

Nguyễn Đức Trí
15 tháng 9 2023 lúc 20:04

a) \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

b) \(2x^2-x=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) \(\left(a+b+c=0\right)\)

d) \(x^2+y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

e) \(x^2+6x+10=0\)

\(\Leftrightarrow x^2+6x+9+1=0\)

\(\Leftrightarrow\left(x+3\right)^2+1=0\left(1\right)\)

mà \(\left(x+3\right)^2+1\ge1>0,\forall x\in R\)

Nên phương trình (1) vô nghiệm