Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Tuấn Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2022 lúc 9:07

\(A=\dfrac{4sin^2a}{1-cos^2a}:2=4:2=2\)

 

Ryoji
Xem chi tiết
Akai Haruma
30 tháng 4 2019 lúc 17:35

Lời giải:

a)

\(A=\frac{4\sin ^2a}{1-\cos ^2\frac{a}{2}}=\frac{4\sin ^2a}{\sin ^2\frac{a}{2}}=\frac{4(2\sin \frac{a}{2}\cos \frac{a}{2})^2}{\sin ^2\frac{a}{2}}=16\cos ^2\frac{a}{2}\)

b)

Sử dụng công thức: \(1-\cos 2a=2\sin ^2a; 1+\cos 2a=2\cos ^2a\)\(\sin 2a=2\sin a\cos a\) ta có:

\(B=\frac{1+\cos a-\sin a}{1-\cos a-\sin a}=\frac{2\cos ^2\frac{a}{2}-2\sin \frac{a}{2}\cos \frac{a}{2}}{2\sin ^2\frac{a}{2}-2\sin \frac{a}{2}.\cos \frac{a}{2}}\)

\(=\frac{2\cos \frac{a}{2}(\cos \frac{a}{2}-\sin \frac{a}{2})}{2\sin \frac{a}{2}(\sin \frac{a}{2}-\cos \frac{a}{2})}\)

\(=\frac{-\cos \frac{a}{2}}{\sin \frac{a}{2}}=-\cot \frac{a}{2}\)

c) \(45-\frac{\pi}{2}\)??? sao đơn vị nó không thống nhất vậy?

Pé Ken
Xem chi tiết
Văn Vân Anh
Xem chi tiết
Akai Haruma
1 tháng 8 2019 lúc 0:18

Lời giải:

1.

\(\cos ^2x+\cos ^2x\tan ^2x=\cos ^2x+\cos ^2x.(\frac{\sin x}{\cos x})^2\)

\(=\cos ^2x+\sin ^2x=1\)

2.

\(\frac{2\cos ^2a-1}{\sin a+\cos a}=\frac{2\cos ^2a-(\sin ^2a+\cos ^2a)}{\sin a+\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a+\cos a}=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a+\cos a}\)

\(=\cos a-\sin a\)

3.

\(\frac{1-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a+\sin ^2a-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a-\cos a}\)

\(=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a-\cos a}=-(\cos a+\sin a)\)

4.

\(\frac{1+\sin a}{1-\sin a}-\frac{1-\sin a}{1+\sin a}=\frac{(1+\sin a)^2-(1-\sin a)^2}{(1-\sin a)(1+\sin a)}\)

\(=\frac{1+\sin ^2a+2\sin a-(1+\sin ^2a-2\sin a)}{1-\sin ^2a}=\frac{4\sin a}{\cos ^2a}=\frac{4\tan a}{\cos a}\)

Mẫn Li
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2020 lúc 12:21

\(C=2sin3x.cos3x.\frac{cos3x}{sin3x}-\left(cos^23x-sin^23x\right)\)

\(=2cos^23x-cos^23x+sin^23x=cos^23x+sin^23x=1\)

\(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)\)

\(=\sqrt{2}\left(sinx.sin\frac{\pi}{4}-cosx.cos\frac{\pi}{4}\right)=-\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

Câu này bạn ghi nhầm đề (lưu ý rằng \(sin\frac{\pi}{4}=cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}\))

Câu 2b bạn cũng xem lại đề, chắc chắn ko đúng

\(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\Rightarrow sin\frac{A}{2}=cos\left(\frac{B}{2}+\frac{C}{2}\right)=cos\frac{B}{2}cos\frac{C}{2}-sin\frac{B}{2}sin\frac{C}{2}\)

Câu 3 bạn cũng ghi sai đề luôn

Trong 1 ngày đẹp trời thì câu 4 cũng sai luôn cho đỡ lạc lõng đồng đội:

\(sin\left(a+b-b\right)=sin\left(a+b\right)cosb-cos\left(a+b\right)sinb=2sin\left(a+b\right)\)

\(\Leftrightarrow sin\left(a+b\right)\left[cosb-2\right]=cos\left(a+b\right).sinb\)

\(\Leftrightarrow\frac{sin\left(a+b\right)}{cos\left(a+b\right)}=\frac{sinb}{cosb-2}\Leftrightarrow tan\left(a+b\right)=\frac{sinb}{cosb-2}\)

4 câu bạn ghi đúng đề bài duy nhất câu 1, kinh thiệt :(

Hằng Vũ
Xem chi tiết
nguyen van tu
Xem chi tiết
Tuyển Trần Thị
29 tháng 9 2017 lúc 19:38

=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 18:15

a.

\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)

\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)

b.

\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 18:18

c.

\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)

\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)

\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)

\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)

Nguyễn Thị Thủy Tiên
Xem chi tiết
Trần Bảo Như
12 tháng 8 2018 lúc 17:45

a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)

\(=\tan^2\alpha.\cos^2\alpha=1\)

b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)

\(=\sin\alpha\left(1-\cos^2\alpha\right)\)

\(=\sin\alpha.\sin^2\alpha\)

Nguyễn Thị Thủy Tiên
13 tháng 8 2018 lúc 8:05

bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu