Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đanh khoa
Xem chi tiết
Siêu sao bóng đá
20 tháng 10 2017 lúc 18:55

Căn bậc 2 à! Biến đổi về dạng lũy thừa cho lẹ. Ta có:

\(a+b+c=2\sqrt{a}+2\sqrt{b}-3+2\sqrt{c}=2.a^2+2.b^2-3+2.c^2\)

\(\Leftrightarrow2.\left(a^2+b^2+c^2\right)-3\)

\(\Rightarrow\)Trời sẽ phù hộ cho bạn làm được bài này! Mình tin là vậy .

oooloo
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 23:31

\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)

\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 20:49

\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)

\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)

\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 20:52

\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)

Nguyễn Phan gia kiệt
Xem chi tiết
misen
4 tháng 7 2021 lúc 10:07

a. M= √a .√b= √a.b= √2.8= 4

misen
4 tháng 7 2021 lúc 10:17

b. N= √c2 -1/c= √(√5 -2)2 -1/(√5 -2)= |√5 -2| -1/(√5 -2)= √5 -2 -1/√5 -2

= (√5 -2)2-1/(√5 -2)= (√5 -3)(√5 -1)/(√5 -2)

gọi t= √5 -2

= (t-1)(t+1)/t= t2-1/t =-1/t

=-1/√5 -2= 2+√5

Nguyên Hoàng
Xem chi tiết

\(A=\dfrac{a^2}{a\sqrt{a^2+9bc}}+\dfrac{b^2}{b\sqrt{b^2+9ca}}+\dfrac{c^2}{c\sqrt{c^2+9ab}}\)

\(A\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+9bc}+b\sqrt{b^2+9ca}+c\sqrt{c^2+9ab}}\)

Áp dụng Bunhiacopxki:

\(\sqrt{a}.\sqrt{a^3+9abc}+\sqrt{b}.\sqrt{b^3+9abc}+\sqrt{c}.\sqrt{c^3+9abc}\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+27abc\right)}\)

\(\Rightarrow A\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+27abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+27abc}}\) (1)

Ta có:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\right)+6abc\)

\(\dfrac{1}{10}\left(a^3+b^3+c^3\right)\ge\dfrac{3}{10}abc\)

\(a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\ge6\sqrt[6]{a^6b^6c^6}=6abc\)

\(\Rightarrow\left(a+b+c\right)^3\ge\dfrac{9}{10}\left(a^3+b^3+c^3\right)+\dfrac{3}{10}abc+18abc+6abc\)

\(\Rightarrow\left(a+b+c\right)^3\ge\dfrac{9}{10}\left(a^3+b^3+c^3+27abc\right)\) (2)

(1);(2) \(\Rightarrow A\ge\sqrt{\dfrac{\dfrac{9}{10}\left(a^3+b^3+c^3+27abc\right)}{a^3+b^3+c^3+27abc}}=\dfrac{3\sqrt{10}}{10}\)

Dấu "=" xảy ra khi \(a=b=c\)

An Vy
Xem chi tiết
quang phan duy
9 tháng 7 2019 lúc 8:23

Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)

mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac

\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)

Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Khách vãng lai đã xóa
an nam
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 4 2022 lúc 14:26

Với mọi số thực dương x;y;z ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Áp dụng:

a.

\(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le\sqrt{3\left(a+2+b+2+c+2\right)}=\sqrt{3\left(21+6\right)}=9\)

b.

\(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{3\left(a+b+2+b+c+2+c+a+2\right)}\)

\(\Rightarrow\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{6\left(a+b+c\right)+18}=\sqrt{6.21+18}=12\)

Dấu "=" xảy ra khi \(a=b=c=7\)

dinh huong
Xem chi tiết
Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 14:54

Ta có:

\(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2=3\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+3}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự:

\(\dfrac{b}{\sqrt{b^2+3}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+3}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{c}{a+c}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

\(P_{max}=\dfrac{3}{2}\) khi \(a=b=c=1\)