Tìm x ko âm bt
a)\(\sqrt{x}>3\)
b)\(\sqrt{2x}< 3\)
c)\(2\sqrt{x}>\)
tìm x ko âm, bt:
\(\sqrt{x}=-3\)
\(\sqrt{x}=-3\left(VLý.do\sqrt{x}\ge0\forall x\right)\)
Vậy \(S=\varnothing\)
tìm số x ko âm biết
a,\(\sqrt{x}=4\) c, \(\sqrt{x}=-3\) e,\(\sqrt{x}=6,25\)
b,\(\sqrt{x}=\sqrt{7}\) d, \(\sqrt{x}=0\)
a)
\(\sqrt{x}=4\Rightarrow x=4^2=16\)
c) \(x\in\varnothing\)
e) \(\sqrt{x}=6,25\Rightarrow x=\left(6,25\right)^2=39,0625\)
b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)
d) \(\sqrt{x}=0\Rightarrow x=0\)
Cách đánh đề độc lạ ghê:v
a: =>x=16
b: =>x=7
c: =>x thuộc rỗng
d: =>x=0
e: =>x=(25/4)^2=625/16
tìm min A=\(\dfrac{-1}{2x-3\sqrt{x}+2}\) với x ko âm
\(2x-3\sqrt{x}+2=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{1}{\dfrac{7}{8}}=\dfrac{8}{7}\)
\(\Rightarrow\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{8}{7}\)
\(A_{min}=-\dfrac{8}{7}\) khi \(x=\dfrac{9}{16}\)
Ta thấy:\(2x-3\sqrt{x}+2=2\left(x-\dfrac{3}{2}\sqrt{x}+1\right)\)\(=2\left(x-2.\dfrac{3}{4}\sqrt{x}+\dfrac{9}{16}+\dfrac{7}{16}\right)=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\)
Vì \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2\ge0\) với \(\forall x\ge0\) nên \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)với \(\forall x\ge0\)
\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{7}{8}\)với \(\forall x\ge0\)
\(\Rightarrow A=\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{7}{8}\)với \(\forall x\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}-\dfrac{3}{4}=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
xin lỗi nha bài này tui gửi nhầm lên đây nên đừng nói tui tự làm tự giải kiếm điểm nhá
Tìm x bt:
\(\sqrt{x^2+2x+1}\) = -x
Rút gọn:
a, \(\sqrt{\left(4-\sqrt{17}\right)}^2\) - \(\sqrt{17}\)
b, \(\sqrt{\left(5-2\sqrt{3}\right)^2}\) - \(2\sqrt{3}\)
2:
a: =căn 17-4-căn 17=-4
b: =5-2căn 3-2căn 3=5-4căn 3
1:
a: =>|x+1|=-x
=>x<=0 và (x+1)^2=x^2
=>x<=0 và (x+1+x)(x+1-x)=0
=>x=-1/2
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)
a/ x <hoac= -23/4
b/ x=2
a/ có 2xcăn6 > 2x2=4
=> 2 căn 6 > 3+1
<=> 2 căn 6 - 3 >1
b/ có 3 căn 2 > 3
=> 3 căn 2 - 9 > -6
=> 6 > 9- 3 căn 2
1. Tìm x để bt có nghĩa
A=\(\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
B=\(\sqrt{\dfrac{2x+3}{x-3}}\)
C=\(\sqrt{-\dfrac{5}{x+2}}\)
D=\(\sqrt{-x}+\dfrac{1}{x+3}\)
2. Rút gọn bt
A=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-1}}{2}};\left(a>1\right)\)
B=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}};\left(a\ge\sqrt{b};b\ge0\right)\)
C=\(\left(1+\dfrac{a+\sqrt{a}}{a+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}+1}\right);\left(a\ge0,a\ne1\right)\)
D=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}};\left(x>0\right)\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
a) tính gtrị của biểu thức A = \(\sqrt{3}+\sqrt{12}-\sqrt{27}-\sqrt{36}\)
b) cho bt B = \(\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x-5}}{\sqrt{x\left(\sqrt{x-1}\right)}}\) với x > 0 và x \(\ne\) 1 . rút gọn bt và tìm x để B = 2
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
Rút gọn bt A=\(\left(\dfrac{1+\sqrt{x}}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
Sau đó tìm x để A>1
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-4\sqrt{x}+4\right)+\left(3\sqrt{x}-4\right)\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(x+1\right)}\)
\(=\dfrac{x\sqrt{x}-4x+4\sqrt{x}+x-4\sqrt{x}+4+3x\sqrt{x}+3\sqrt{x}-4x-4}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)}{x-\sqrt{x}}\)
\(=\dfrac{4x\sqrt{x}-7x+3\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\cdot\left(4\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}-3}{\sqrt{x}-2}\)
Để A>1 thì A-1>0
\(\Leftrightarrow\dfrac{4\sqrt{x}-3-\sqrt{x}+2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-1}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-1\le0\\\sqrt{x}-2>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x\le\dfrac{1}{9}\\x>4\end{matrix}\right.\)
Tìm x
\(a.\sqrt{2+\sqrt{3+\sqrt{x}}=3}\)
\(b.\sqrt{x^2-4}+\sqrt{x+2}=0\)
\(c.\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)