Tính giá trị biểu thức sau:
B=x(x-2)+3(2-x) tại x=35
Tính giá trị của biểu thức: B = (x-1).(x-2).(x-3). ... .(x-35) tại x =34
Giải giúp mình với
Theo quy luật trên, trong biểu thức $B$ sẽ có nhân tử $(x-34)$
Mà với $x=34⇒x-34=0$
Nên $B=(x-1)(x-2)(x-3).....(x-34)(x-35)=(x-1).(x-2).(x-3).....0.(x-35)=0$
Vậy $B=0$
B= (X-1).(X-2).(X-3). ... .(X-34).(X-35) tại X = 34
B= (34-1).(34-2).(34-3)....(34-34).(34-35)
B= 33.32.31. ... .0.(-1)
B=0
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Tính giá trị biểu thức : 35 x m + 35 x p + 35 x n
với m = 3 ; n = 2 ; p = 5
Trả lời: Giá trị của biểu thức: 35 x m + 35 x p + 35 x n là ...
\(35\times m+35\times n+35\times p\)
\(=35\times\left(m+n+p\right)\)
Thay \(m=3;n=2;p=5\) vào biểu thức trên ta có:
\(35\times\left(3+2+5\right)=35\times10=350\)
35 x m + 35 x p + 35 x n
Thay số: ⇒ 35 x 3 + 35 x 5 + 35 x 2
= 35 x (3 + 5 + 2)
= 35 x 10
= 350
Tính giá trị của biểu thức: B= (x-1).(x-2).(x-3). ... .(x-35) tại x =34
Giúp mình với mai mình thi rồi cảm ơn mọi ngườiii
B= (x-1).(x-2)....(x-35)
Thay x=34 vào B, ta được:
B=(34-1).(34-2).....(23-34).(34-35)
B= 0
Vậy B=0
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
a) Tính giá trị của biểu thức đại số \(3x - 2\) tại x = 2.
b) Tính giá trị của đa thức P(x) = \( - 4x + 6\) tại x = – 3.
a) Tại x = 2, giá trị của biểu thức đại số \(3x - 2\)= \(3.2 - 2 = 6 - 2 = 4\).
b) Tại x = – 3, giá trị của đa thức P(x) = \( - 4x + 6\) bằng:
\(P( - 3) = - 4. - 3 + 6 = 12 + 6 = 18\).
Cho biểu thức B= (x/x^2-4 + 2/2-x + 1/x+2) : (x - 2 + 10 - x^2/x+2)
a) Rút gọn biểu thức B.
b) Tính giá trị của biểu thức B tại x, biết lxl = 1/2.
c) Tìm giá trị nguyên của x để B nhận giá trị nguyên.
mng giúp em vs ạ, em cảm ơn nhiều <3
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-1}{x-2}\)
b: Khi x=1/2 thì \(B=\dfrac{-1}{\dfrac{1}{2}-2}=\dfrac{2}{3}\)
Khi x=-1/2 thì B=2/5
c: Để B nguyên thì \(x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)
a, đk : x khác -2 ; 2
\(B=\left(\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{1}{2-x}\)
b, Ta có \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2};x=-\dfrac{1}{2}\)
Với x = 1/2 ta được \(B=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)
Với x = -1/2 ta được \(B=\dfrac{1}{2+\dfrac{1}{2}}=\dfrac{2}{5}\)
c, \(\dfrac{1}{2-x}\Rightarrow2-x\inƯ\left(1\right)=\left\{\pm1\right\}\)
2-x | 1 | -1 |
x | 1 | 3 |
a) Tìm x sao cho giá trị biểu thức \(\dfrac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\dfrac{3x+3}{6}\)
b) Tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x-1)2.
c) Tìm x sao cho giá trị của biểu thức \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị của biểu thức \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4