cho a+b+c=0
cmr M=N=P biết
M=a(a+b)(a+c)
N=b(b+c)(b+a)
P=c(c+a)(c+b)
Cho a + b + c = 0. CMR: M = N = P
M = a(a + b)(a + c)
N = b(b + c)(b + a)
P = c(c + a)(c + b)
Cho a+b+c=0. CMR: M=N=P với
M=a(a+b)(a+c)
N=b(b+c)(b+a)
P=c(c+a)(c+b)
a+b=-c;b+c=-a;a+c=-b
suy ra cả m,n,p đều bằng -abc
a +b +c = 0 => a + b = -c ; a +c = -b ; b+c = -a
thay vào M ta có
M = a . -c . -b = abc (1)
Thay tương tự vào N , P ta cũng đc N =abc (2)
P =abc( 3)
Từ 1 2 và 3 => ĐPCM
Vậy .....
Vì a + b + c = 0
=> a + b = - c
a + c = - b
b + c = - a
Ta có:
M = a ( a + c ) ( a + b )
= a . ( - b ) . ( - c)
= abc ( 1)
N = b ( b + c ) ( b + a )
= b . ( - a) . ( - c)
= abc ( 2)
P = c ( c + b ) ( a + c )
= c . ( - a) . ( - b )
= abc ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3) suy ra : M = N = P
Cho a+b+c=0
Cmr : M=N=P với
M= a(a+b)(a+c)
N= b(b+c)(b+a)
P=c(c+a)(c+b)
Vì \(a+b+c=0\)
Theo đề bài có : \(M=a\left(a+b\right)\left(a+c\right)\)
\(=a\left(-c\right)\left(-b\right)=abc\) (1)
\(N=b\left(b+c\right)\left(b+a\right)\)
\(=b\left(-a\right)\left(-c\right)=abc\) (2)
\(P=c\left(c+a\right)\left(c+b\right)\)
\(=c\left(-b\right)\left(-a\right)=abc\)(3)
Từ (1) ;(2) và (3)
\(\Rightarrow M=N=P\) (đpcm)
CHO a+b+c=0
CMR: M=N=P
Với M=a(a+b)(a+c)
N=b(b+c)(b+a)
C=c(c+a)(c+b)
B1: cho a+b+c=0 với M=a.(a+b)(a+c);N=b.(b+c)(b+a);P=c.(c+a)(c+b)..CMR:M=N=P
B2:cho a+b+c=2P CMR:2pc+b2+c2 - a2 = 4p (P-a)
Cho a+b+c=0 Biết:
M= a(a+b)(a+c)
N= b(b+c)(b+a)
P=c(c+b)(c+a)
Chứng tỏ M=N=P
ta có: a + b + c = 0
=> a + b = -c ; a + c = -b ; b + c = -a
=> M = a(a + b)(a + c) = a(-c)(-b)= abc
N = b(b + c)(b + a) = b(-a)(-c)= abc
P = c(c + b)(c + a) = c(-a)(-b)= abc
=> M = N = P
ok nha!!! 5645657567896965345645656756768762345335345435344456
Theo đề bài ta có : a + b + c = 0
=> a + b = 0 - c
=> a + c = 0 - b
=> b + a = 0 - c
=> b + c = 0 - a
=> c + a = 0 - b
=> c + b = 0 - a
Thay vào biểu thức trên ta có :
M= a(a+b)(a+c) = a ( 0 - c ) ( 0 - b ) = tự làm típ rùi = 0 - 0 + abc = abc
Tương tự N= b(b+c)(b+a) =
P=c(c+b)(c+a) =
Rùi kết luận nha
\(M=a\left(a+b\right)\left(a+c\right)\)
\(M=\left(a^2+ab\right)\left(a+c\right)\)
\(M=a^3+a^2c+a^2b+abc\)
\(M=a^2\left(a+b+c\right)+abc=a^2\times0+abc=abc\)
N và P làm tương tự như thế
\(\Rightarrow M=N=P\)
Bài 1: Cho a, b, c thõa mãn 0<a<=b<=c. CMR:
a/b+b/c+c/a>=b/a+c/b+a/c
Bài 2: Cho a, b, c>0 CMR
a/bc+b/ca+c/ab>=2(1/a+1/b+1/c)
Bài 3: CMR với mọi x, y ta có
x^3/x^2+xy+y^2>=(2x-y)/3
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Bạn nhờ nên đăng hộ. Mong có người giúp :)
Cho a+b+c=0 CMR: M=N=P
Biết M=a(a+b).(a+c)
N= b(b+c).(b+a)
P= c(c+a).(c+b)
Thừa biết là có ý đồ xấu =<<<< ๖ۣۜPresident ๖ۣۜof ๖ۣۜclass ღ7A ◕♌Lớp ♫trưởng ღ7A◕
Cho M =\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) vs a,b,c >0
CMR M ko là số nguyên
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo 2 vế bất đẳng thức ta có:
\(M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\left(1\right)\)
Áp dụng tính chất \(\left(a;b>1\right)\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\) , ta có:
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo 2 vế bất đẳng thức ta có:
\(M>\frac{2.\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M>2\left(2\right)\)
Từ (1) và (2) ta có: \(1< M< 2\)
\(\Rightarrow M\) không là số nguyên.