Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thùy
Xem chi tiết
Nguyễn Thị Khánh Huyền
Xem chi tiết
Duartte Monostrose Neliz...
18 tháng 6 2017 lúc 21:32

a+b=-c;b+c=-a;a+c=-b

suy ra cả m,n,p đều bằng -abc

Lê Anh Tú
18 tháng 6 2017 lúc 21:33

a +b +c = 0 => a + b = -c ; a +c = -b ; b+c = -a

thay vào M ta có

M = a . -c . -b = abc (1)

Thay tương tự vào N , P ta cũng đc N =abc (2)

                                                     P =abc( 3)

Từ 1 2 và 3 => ĐPCM 

Vậy .....

0o0 Nguyễn Đoàn Tuyết Vy...
18 tháng 6 2017 lúc 21:38

Vì a + b + c = 0

=> a + b = - c

    a + c = - b

   b + c = - a

Ta có:

M = a ( a + c ) ( a + b ) 

   = a . ( - b ) . (  - c) 

  = abc    ( 1)

N = b ( b + c ) ( b + a )

  = b . ( - a) . ( - c)

  = abc    ( 2) 

P = c ( c + b ) ( a + c ) 

   = c . ( - a) . ( - b )

  = abc    ( 3 ) 

Từ  ( 1 ) ; ( 2 ) ; ( 3) suy ra : M = N =  P 

Phan Nguyễn Hà My
Xem chi tiết
Trần Thùy Dương
1 tháng 8 2018 lúc 10:42

Vì \(a+b+c=0\)

Theo đề bài có : \(M=a\left(a+b\right)\left(a+c\right)\)

\(=a\left(-c\right)\left(-b\right)=abc\) (1)

    \(N=b\left(b+c\right)\left(b+a\right)\)

\(=b\left(-a\right)\left(-c\right)=abc\)    (2)

    \(P=c\left(c+a\right)\left(c+b\right)\)

\(=c\left(-b\right)\left(-a\right)=abc\)(3)

Từ (1) ;(2) và (3)

\(\Rightarrow M=N=P\) (đpcm)

Nguyễn Khả Hân
Xem chi tiết
Tú
Xem chi tiết
Jenny Nguyễn
Xem chi tiết
Oo Bản tình ca ác quỷ oO
21 tháng 8 2016 lúc 20:58

ta có: a + b + c = 0

=> a + b = -c ; a + c = -b ; b + c = -a

=> M = a(a + b)(a + c) = a(-c)(-b)= abc

     N = b(b + c)(b + a) = b(-a)(-c)= abc

     P = c(c + b)(c + a) = c(-a)(-b)= abc

=> M = N = P

ok nha!!! 5645657567896965345645656756768762345335345435344456

Nguyễn Phương Trung
21 tháng 8 2016 lúc 21:04

Theo đề bài ta có : a + b + c = 0 

=> a + b = 0 - c 

=> a + c = 0 - b 

=> b + a = 0 - c 

=> b + c = 0 - a 

=> c + a = 0 - b 

=> c + b = 0 - a 

Thay vào biểu thức trên ta có : 

M= a(a+b)(a+c) = a ( 0 - c ) ( 0 - b ) = tự làm típ rùi = 0 - 0 + abc = abc 

Tương tự  N= b(b+c)(b+a) = 

P=c(c+b)(c+a) = 

Rùi kết luận nha 

Phan Văn Hiếu
27 tháng 8 2016 lúc 21:13

\(M=a\left(a+b\right)\left(a+c\right)\)

\(M=\left(a^2+ab\right)\left(a+c\right)\)

\(M=a^3+a^2c+a^2b+abc\)

\(M=a^2\left(a+b+c\right)+abc=a^2\times0+abc=abc\)

N và P làm tương tự như thế

\(\Rightarrow M=N=P\)

Hoshymya Ichigo
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 5 2019 lúc 19:09

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Xem chi tiết

à thôi sorry. Ko cần nữa đâu

Lê Nguyên Hạo
6 tháng 7 2016 lúc 21:18

Yahoo đầy

Nobi Nobita
6 tháng 7 2016 lúc 21:19

Thừa biết là có ý đồ xấu =<<<< ๖ۣۜPresident ๖ۣۜof ๖ۣۜclass ღ7A ◕♌Lớp ♫trưởng ღ7A◕

Trần Minh Anh
Xem chi tiết
Phương Trâm
16 tháng 1 2017 lúc 21:10

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo 2 vế bất đẳng thức ta có:

\(M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\left(1\right)\)

Áp dụng tính chất \(\left(a;b>1\right)\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\) , ta có:

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng theo 2 vế bất đẳng thức ta có:

\(M>\frac{2.\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M>2\left(2\right)\)

Từ (1) và (2) ta có: \(1< M< 2\)

\(\Rightarrow M\) không là số nguyên.