Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Liễu Lê thị
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Liễu Lê thị
Xem chi tiết
OH-YEAH^^
13 tháng 11 2021 lúc 13:53

Ta có: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}\Rightarrow\dfrac{b+c}{a}=\dfrac{a+c}{b}\left(1\right)\)

\(\dfrac{c}{a+b}=\dfrac{b}{a+c}\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}\left(2\right)\)

Từ (1), (2) \(\Rightarrow\dfrac{b+c}{a}=\dfrac{a+b}{c}=\dfrac{a+c}{b}\)

Liễu Lê thị
Xem chi tiết
Ngo Mai Phong
13 tháng 11 2021 lúc 18:07

a+b−cc=b+c−aa=c+a−bb

 

⇒a+b−cc+1=b+c−aa+1=c+a−bb+1

 

⇒a+bc=b+ca=c+ab

 

+)Nếu a+b+c=0⇒a+b=−c;b+c=−a;c+a=−b

 

⇒B=a+ba.c+ac.b+cb=−ca.−bc.−ab=−(abc)abc=−1

 

Nếu a+b+c≠0

 

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

a+bc=b+ca=c+ab=2(a+b+c)a+b+c=2

 

⇒a+b=2c

 

      b+c=2a

 

       c+a=2b

 

⇒B=2ca.2bc.2ab=2.2.2=8

Big City Boy
Xem chi tiết
37-Đặng Thị Anh Thư-7A2...
Xem chi tiết
Dr.STONE
26 tháng 1 2022 lúc 10:15

:)

- Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\) (gt)

=>\(ad< bc\) 

=>\(ad+ab< bc+ab\)

=>\(a\left(b+d\right)< b\left(a+c\right)\)

=>\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)

- Ta có: \(\dfrac{c}{d}>\dfrac{a}{b}\) (gt)

=>\(bc>ad\)

=>\(bc+cd>ad+cd\)

=>\(c\left(b+d\right)>d\left(a+c\right)\)

=>\(\dfrac{c}{d}>\dfrac{a+c}{b+d}\) (2)

- Từ (1) và (2) suy ra: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

Bùi Đức Anh
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
Nguyễn Xuân Tiến 24
18 tháng 12 2017 lúc 10:59

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)\(\Leftrightarrow a+\dfrac{a^2}{b+c}+b+\dfrac{b^2}{c+a}+c+\dfrac{c^2}{a+b}=a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\left(dpcm\right)\)

Hoàn Minh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 9:45

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}=2\) (1)

\(VP=\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{c}{\sqrt{c\left(a+b\right)}}\)

\(VP\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\) (2)

(1);(2) \(\Rightarrow VT< VP\)

Trần Thị Ngọc Trâm
Xem chi tiết
Ha Hoang Vu Nhat
7 tháng 5 2017 lúc 9:53

Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

=> \(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac}{a+b}+\dfrac{bc}{a+b}=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+b\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+c\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

Vậy \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\) thì \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)