Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Nguyễn Thị Huyền
Xem chi tiết
ASOC
Xem chi tiết
Thai Nguyen
Xem chi tiết
Nguyễn Xuân Tiến 24
10 tháng 8 2018 lúc 19:44

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-ab+b^2\ge ab\)

Nhân hai vế của phương trình với \(a+b>0\) ta có:

\(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)Áp dụng kết quả trên ta có:

\(A=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le\)

\(\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}=\)(vì abc=1)

\(=\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=1\)

ITACHY
Xem chi tiết
Nhã Doanh
13 tháng 8 2018 lúc 11:22

Ta có: \(x^3+y^{ 3}=\left(x+y\right)\left(x^2-xy+y^2\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy,\forall x,y\ge0\)

Áp dụng:

\(\sum_{cyc}\dfrac{1}{a^3+b^3+abc}\le\sum_{cyc}\dfrac{1}{\left(a+b\right)ab+abc}=\sum_{cyc}\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)

\("="\Leftrightarrow a=b=c\)

Nhã Doanh
25 tháng 7 2018 lúc 11:34

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy\)( \(\forall x,y\ge0\) )

Áp dụng: \(\sum\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{\left(a+b\right)ab+abc}=\sum\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)

\("="\Leftrightarrow a=b=c\)

kaito
Xem chi tiết
Hiếu Cao Huy
24 tháng 1 2018 lúc 20:49

ta chứng minh đc \(x^3+y^3\ge xy\left(x+y\right)\)

thay vào + biến đổi ta có đpcm

đẳng thúc xảy ra khi a=b=c

lol!!!

Nguyễn Hoàng Minh
Xem chi tiết
Lightning Farron
30 tháng 12 2017 lúc 12:05

Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)\(\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ac\left(a+b+c\right)}\)

\(=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}=VP\)

Khi \(a=b=c\)

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 8:49

3: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\b+c>=2\sqrt{bc}\\a+c>=2\sqrt{ac}\end{matrix}\right.\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)>=8abc\)

1: =>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a^2-2ab+b^2)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

Trần Tuấn Hoàng
11 tháng 4 2023 lúc 15:01

2) Áp dụng bất đẳng thức ở câu 1 ta có:

\(\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}=\dfrac{1}{ab\left(a+b+c\right)}\)

Tương tự: \(\dfrac{1}{b^3+c^3+abc}\le\dfrac{1}{bc\left(a+b+c\right)}\)

và \(\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ca\left(a+b+c\right)}\)

Cộng vế theo vế của các bất đẳng thức trên ta được:

\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c.

GG boylee
Xem chi tiết
ha thi thuy
Xem chi tiết