Chứng minh:
a) \(\dfrac{1}{2}< \dfrac{5-\sqrt{13}}{2}< 1\)
b) \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
cho a;b dương thỏa \(a;b>\dfrac{\sqrt{5}-1}{2}\)
chứng minh \(\dfrac{1}{a^2+a-1}+\dfrac{1}{b^2+b-1}\ge\dfrac{2}{5}\)
Cho a, b>0. Chứng minh rằng:
a) \(\dfrac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
b) \(\dfrac{2ab}{a+b}+\sqrt{\dfrac{a^2+b^2}{2}}\ge\sqrt{ab}+\dfrac{a+b}{2}\)
c) \(\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{1}{1+ab}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
cho a,b,c>0 chứng minh
\(P=\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+c^2}}+\dfrac{c}{\sqrt{ca+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)
\(\dfrac{P}{\sqrt{2}}=\dfrac{a}{\sqrt{2b\left(a+b\right)}}+\dfrac{b}{\sqrt{2c\left(b+c\right)}}+\dfrac{c}{\sqrt{2a\left(a+c\right)}}\)
\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2a}{2b+a+b}+\dfrac{2b}{2c+b+c}+\dfrac{2c}{2a+a+c}\)
\(\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)=2\left(\dfrac{a^2}{a^2+3ab}+\dfrac{b^2}{b^2+3bc}+\dfrac{c^2}{c^2+3ca}\right)\)
\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)
\(\Rightarrow P\ge\dfrac{3\sqrt{2}}{2}\) (đpcm)
\(\dfrac{a}{\sqrt{ab+b^2}}=\dfrac{\sqrt{2}.a}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{\sqrt{2}.a}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)
làm tương tự với \(\dfrac{b}{\sqrt{bc+c^2}};\dfrac{c}{\sqrt{ca+a^2}}\)
\(=>P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\)
\(=2\sqrt{2}\left(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\right)\)
\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\dfrac{4}{3}\left(ab+bc+ca\right)+\dfrac{8}{3}\left(ab+bc+ca\right)}\right]\)
\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{\dfrac{4}{3}\left(a+b+c\right)^2}\right]=\dfrac{2\sqrt{2}.3}{4}=\dfrac{3\sqrt{2}}{2}\)
dấu"=" xảy ra<=>a=b=c
Giải giùm mình mấy bài BPT này nha
a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)
b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)
e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Cho a,b,c >0 Chứng minh rằng:
a) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
b) \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\ge\dfrac{1}{2}\)
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)
\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)
\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)
\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)