a) Với \(n\in N\). Chứng minh:
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
b) Cho a,b,c > 0. Chứng minh:
+) Nếu \(a+b+c=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì a = b = c.
+) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\).
Bài 1: Cho A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)với x≥0; y≥0; x≠y
a) Rút gọn A
b) Chứng minh A≥0
Bài 2:Cho A= \(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
với x>0; x≠1
a) Rút gọn A
b)Tìm x để A=6
1. A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Chứng minh: A<1
\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)
a,Rút gọn K
b,Tính K khi x=\(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
c,Tìm x để \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\)≥1
Rút gọn biểu thức
a) \(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)
b)\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
c)\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)
d) \(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)
e)\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y},x,y>0\)
f)\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g)\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}v\text{ới}a>0,a\ne3\)
Bài 2: chứng minh rằng : \((\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}).\sqrt{5-\sqrt{21}}=4\)
Bài 3 : Rút gọn biểu thức A= (\(\dfrac{\sqrt{x}+2}{x-1}-\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}).\dfrac{2}{x-1}(vớix\ge0;x\ne1)\)
Bài 4: cho \(\Delta\)ABC vuông tại A có đường AH đường cao . Biết BH = 9cm , CH = 16cm . Tính AH ; AC ; số đo góc ABC ( số đo góc làm tròn đến độ )
Bài 5 :Cho biểu thức : A = \(\dfrac{\sqrt{2}}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+3}+\dfrac{5-x}{(1-\sqrt{x})(\sqrt{x}+3)}(x>0;x\ne1)\)
a, rút gọn A
b, Gỉa sử A = \(\sqrt{2}\) chứng tỏ rằng : \(\sqrt{x}-\sqrt{2}\) là số nguyên
Bài 6 : Cho biểu thức A = \((\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}).\dfrac{x-4}{\sqrt{x}+3}\)với x\(\ge0;x\ne4\)
a, rút gọn A
b, tìm x để A > \(\dfrac{1}{2}\)
Bài 7 : cho biểu thức P = \((\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1})(1-\dfrac{1}{\sqrt{x}})\)
a, rút gọn biểu thức P
b, tính giá trị biểu thức P khi x= \(\dfrac{1}{4}\)
c, Tìm tất cả các giá trị của x để P < 1
Bạn nào làm được thì giúp mình với ạ ! mk cám ơn !
\(\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a-1}}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\\ a,TìmađểbiểuthứcAcónghĩa.Rútgọn\\ b,TínhgiátrịcủaAkhia=\dfrac{2}{7+3\sqrt{5}}\\ c,TìmasaochoA< 1\)
Rút gọn
A=\(\sqrt{13+4\sqrt{10}}\)
B= \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
C= \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{7}}\)
1. tính:
a, \(\sqrt{a^2}\) với a = 2,5; 0,3; -0,1 ; b, \(\sqrt{a^4}\) với a = -1,3; 2,1; -0,4
2. tính:
a, \(\sqrt{10^2-6^2}\) b, \(\sqrt{17^2-8^2}\) c, \(\sqrt{2,9^2-2,1^2}\)
d, \(\sqrt{\dfrac{13^2-6^2}{81}}\) e, \(\sqrt[]{\dfrac{6,2^2-5,9^2}{2,43}}\) g, \(\sqrt{\dfrac{9^3+7^3}{9^2-9.7+7^2}}\)
3. Tính.
a,\(\sqrt{\dfrac{1,96}{2,25}}\) b, \(\sqrt{1\dfrac{13}{36}.1\dfrac{32}{49}}\) c, \(\sqrt{\dfrac{1}{9}.0,09.64}\)
4. Tính.
a, \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}\) b,\(\dfrac{\sqrt{7}}{\sqrt{175}}\) c,\(\dfrac{\sqrt{2,84}}{\sqrt{0,71}}\) d, \(\dfrac{\sqrt{6,25}}{\sqrt{1,44}}\)