Tính:
a)\(\dfrac{1}{n}+\dfrac{1}{n+a}\)với a ;n là số tự nhiên và n khác 0
b) 1/1.2+1/2.3+1/3.4+...+
1/2008.2009
c)3/1.4+3/4.7+3/7.10+...+3/94.97
d)2/1.2+2/2.3+2/3.4+...+
2/2008.2009
Cho:
\(A=\dfrac{1}{1.\left(2n-1\right)}+\dfrac{1}{3.\left(2n-3\right)}+...+\dfrac{1}{\left(2n-3\right).3}+\dfrac{1}{\left(2n-1\right).1}\) \(B=1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\) (với n ∈ N*).
Tính \(\dfrac{A}{B}\)
Viết chương trình tính \(S=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}+...\)cho đến khi S>a với a là một số cho trước ,n là một số nguyên dương
a) Tìm các số nguyên n để phân số sau có giá trị nguyên:
\(A=\dfrac{n-5}{n-3}\)
\(\dfrac{n+4}{n+1}\)
b) Tính A, biết A= \(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\).
Nếu \(n-3=1\Rightarrow n=4\); \(n-3=-1\Rightarrow n=2\); \(n-3=2\Rightarrow n=5\); \(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)
\(A=\dfrac{n+4}{n+1}\) làm tương tự.
b) Dễ thấy các số ở mẫu có thể viết dưới dạng:
\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)
\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)
\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)
...
\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)
Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=\dfrac{3}{8}\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\). Chứng minh \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\)với n lẻ.
Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)
\(\Leftrightarrow \frac{(a+b)[c(a+b+c)+ab]}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)
Xét : \(A=\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}-\frac{1}{a^n+b^n+c^n}\)
\(A=\frac{a^n+b^n}{a^nb^n}+\frac{a^n+b^n}{c^n(a^n+b^n+c^n)}\)
\(A=(a^n+b^n)\left(\frac{1}{a^nb^n}+\frac{1}{c^n(a^n+b^n+c^n)}\right)\)
\(A=\frac{(a^n+b^n)[c^n(a^n+b^n+c^n)+a^nb^n]}{a^nb^nc^n(a^n+b^n+c^n)}\)
\(A=\frac{(a^n+b^n)(b^n+c^n)(c^n+a^n)}{a^nb^nc^n(a^n+b^n+c^n)}\)
Vì $n$ lẻ nên :
\((a^n+b^n)(b^n+c^n)(c^n+a^n)=(a+b)(b+c)(c+a)(a^{n-1}+....+b^{n-1})(b^{n-1}+..+c^{n-1})(c^{n-1}+...+a^{n-1})\)
\(=0\) do \((a+b)(b+c)(c+a)=0\)
Do đó: \(A=0\Leftrightarrow \frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
CMR: Với mọi số nguyên n>=2 thì \(B=\dfrac{1}{A^2_2}+\dfrac{1}{A^2_3}+\dfrac{1}{A^2_4}+...+\dfrac{1}{A^2_n}\) có giá trị bằng: \(\dfrac{n-1}{n}\)
\(B=\dfrac{0!}{2!}+\dfrac{1!}{3!}+\dfrac{2!}{4!}+...+\dfrac{\left(n-2\right)!}{n!}\)
\(=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(=1-\dfrac{1}{n}=\dfrac{n-1}{n}\) (đpcm)
Viết chương trình tính \(S=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}+...\)cho đến khi S>a với a là một số cho trước n là một số nguyên dương (ghi rõ ràng được không ạ)
#include <bits/stdc++.h>
using namespace std;
double s,a;
int i,n;
int main()
{
cin>>a;
s=0;
n=0;
while (s<=a)
{
n=n+1;
s=s+1/(n*1.0);
}
cout<<n;
return 0;
}
a) Chứng tỏ rằng với \(n\in\mathbb{N},n\ne0\) thì :
\(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
b) Áp dụng kết quả ở câu a) để tính nhanh :
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{9.10}\)
a) \(\forall\)n \(\in\) N* ta có :
\(\dfrac{1}{n\left(n+1\right)}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{n+1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (đpcm)
Tính tổng A sau đây (n được nhập vào từ bàn phím):
A = \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{1\left(n+2\right)}\)
Sửa lại đề bài : \(A=....+\dfrac{1}{n\left(n+2\right)}\)
Program HOC24;
var i,n: integer;
a: real;
begin
write('Nhap n: '); readln(n);
a:=0;
for i:=1 to n do a:=a+1/(n*(n+2));
write('A = ',a:6:2);
readln
end.
giúp em vs ạ :((( Viết chương trình nhập vào từ bàn phím số nguyên dương N(N chia hết cho 3) a là số bất kì .Tính và đưa ra màn hình tổng T.
\(T=\dfrac{a+5}{1+5}+\dfrac{a+3}{1+3}+\dfrac{a+6}{1+6}+\dfrac{a+9}{1+9}+...+\dfrac{a+N}{1+N}\)
tức là từ a cộng mấy đến a+n vậy bạn?
Tính tổng : A=\(\dfrac{1}{1+2}+\dfrac{1}{2+3}+\dfrac{1}{3+4}+\dfrac{1}{4+5}+........+\dfrac{1}{n+\left(n+1\right)}\)