Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Xuan Mai
Xem chi tiết

a: Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)

Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 21:59

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}\ne-\dfrac{1}{m}\)

=>\(m^2\ne-3\)(luôn đúng)

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\cdot\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{2m^2+5m}{m^2+3}-2=\dfrac{2m^2+5m-2m^2-6}{m^2+3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)

\(x+y=\dfrac{3}{m^2+3}\)

=>\(\dfrac{2m+5+5m-6}{m^2+3}=\dfrac{3}{m^2+3}\)

=>\(7m-1=3\)

=>7m=4

=>m=4/7(nhận)

Đõ Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2021 lúc 18:53

Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Tới đây bạn tự làm tiếp nhé

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 11 2021 lúc 9:59

\(\text{Với }m\ne-1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}mx+y=m^2+3\\y=x+4\end{matrix}\right.\\ \Leftrightarrow mx+x+4=m^2+3\\ \Leftrightarrow x\left(m+1\right)=m^2-1\\ \Leftrightarrow x=\dfrac{\left(m-1\right)\left(m+1\right)}{m+1}=m-1\\ \Leftrightarrow y=x+4=m+3\)

\(\Leftrightarrow\left(x;y\right)=\left(m-1;m+3\right)\left(đpcm\right)\)

\(\Leftrightarrow Q=x^2-2y+10\\ \Leftrightarrow Q=\left(m-1\right)^2-2\left(m+3\right)+10\\ \Leftrightarrow Q=m^2-2m+1-2m-6+10\\ \Leftrightarrow Q=m^2-4m+5=\left(m-2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow m=2\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

Vậy \(Q_{min}=1\)

nguyen thuy nga
Xem chi tiết
SC__@
24 tháng 2 2021 lúc 12:31

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 20:19

a: Thay m=-2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)

\(x^2-y^2=4\)

=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)

=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)

=>\(8m^2+8m+2=4\left(m+1\right)^2\)

=>\(8m^2+8m+2-4m^2-8m-4=0\)

=>\(4m^2-2=0\)

=>\(m^2=\dfrac{1}{2}\)

=>\(m=\pm\dfrac{1}{\sqrt{2}}\)

Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 8:28

a: Khi m=3 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}3x-y=2\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-3y=6\\2x+3y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=11\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3x-2=3-2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}mx-y=2\\2x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\2x+m\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+2\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+5m}{m^2+2}-2=\dfrac{2m^2+5m-2m^2-4}{m^2+2}=\dfrac{5m-4}{m^2+2}\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\)

\(x+y=1-\dfrac{m^2}{m^2+2}\)

=>\(\dfrac{5m-4+2m+5}{m^2+2}=\dfrac{m^2+2-m^2}{m^2+2}=\dfrac{2}{m^2+2}\)

=>7m+1=2

=>7m=1

=>\(m=\dfrac{1}{7}\)

Rhider
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2017 lúc 2:12

Xét hệ 

m x + y = 3 4 x + m y = 6 ⇔ y = 3 − m x 4 x + m 3 − m x = 6 ⇔ y = 3 − m x 4 x + 3 m − m 2 x = 6 ⇔ y = 3 − m x 4 − m 2 x = 6 − 3 m ⇔ y = 3 − m x                                 1 m 2 − 4 x = 3 m − 2       2

Hệ phương trình đã cho có nghiệm duy nhất ⇔ (2) có nghiệm duy nhất

m 2 – 4 ≠ 0 ⇔ m ≠ ± 2 ( * )

Khi đó hệ đã cho có nghiệm duy nhất

⇔ x = 3 m + 2 y = 3 − 3 m m + 2 ⇔ x = 3 m + 2 y = 6 m + 2

Ta có

x > 0 y > 2 ⇔ 3 m + 2 > 0 6 m + 2 > 1 ⇔ m + 2 > 0 4 − m m + 2 > 0 ⇔ m > − 2 4 − m > 0 ⇔ m > − 2 m < 4 ⇔ − 2 < m < 4

Kết hợp với (*) ta được giá trị m cần tìm là – 2 < m < 4; m ≠ 2

Đáp án: A