Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hệ phương trình m x + y = 3 4 x + m y = 6 (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn  x > 0 y > 1

A. – 2 < m < 4; m ≠ 2

B. – 2 < m < 4

C. m > −2; m ≠ 2

D. m < 4; m ≠ 2

Cao Minh Tâm
27 tháng 5 2017 lúc 2:12

Xét hệ 

m x + y = 3 4 x + m y = 6 ⇔ y = 3 − m x 4 x + m 3 − m x = 6 ⇔ y = 3 − m x 4 x + 3 m − m 2 x = 6 ⇔ y = 3 − m x 4 − m 2 x = 6 − 3 m ⇔ y = 3 − m x                                 1 m 2 − 4 x = 3 m − 2       2

Hệ phương trình đã cho có nghiệm duy nhất ⇔ (2) có nghiệm duy nhất

m 2 – 4 ≠ 0 ⇔ m ≠ ± 2 ( * )

Khi đó hệ đã cho có nghiệm duy nhất

⇔ x = 3 m + 2 y = 3 − 3 m m + 2 ⇔ x = 3 m + 2 y = 6 m + 2

Ta có

x > 0 y > 2 ⇔ 3 m + 2 > 0 6 m + 2 > 1 ⇔ m + 2 > 0 4 − m m + 2 > 0 ⇔ m > − 2 4 − m > 0 ⇔ m > − 2 m < 4 ⇔ − 2 < m < 4

Kết hợp với (*) ta được giá trị m cần tìm là – 2 < m < 4; m ≠ 2

Đáp án: A


Các câu hỏi tương tự
Le Xuan Mai
Xem chi tiết
Trần Việt Hoàng
Xem chi tiết
Le Xuan Mai
Xem chi tiết
hào Nguyễn
Xem chi tiết
Khánh ly
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Rhider
Xem chi tiết
Kunzy Nguyễn
Xem chi tiết
Le Xuan Mai
Xem chi tiết
Hàn Minh Nguyệt
Xem chi tiết