Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 4 2018 lúc 9:44

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2017 lúc 10:37

Đáp án B

Phạm Hải Vũ
Xem chi tiết
Bùi Võ Đức Trọng
28 tháng 7 2021 lúc 9:29

Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

Mà   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố.

 

Đinh
Xem chi tiết
Vũ Khánh Ngọc
Xem chi tiết
Đinh quang hiệp
27 tháng 4 2018 lúc 17:43

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(=\frac{a+b+c}{a+b+c}=1\Rightarrow\)đpcm

katty money
Xem chi tiết
Vũ Mai phương
Xem chi tiết
Trần Tuấn Hoàng
7 tháng 5 2022 lúc 16:22

-Áp dụng BĐT Caushy Schwarz cho các cặp số dương (1,1) ở tử và (a,b) ở mẫu ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

-Dấu "=" xảy ra khi \(a=b\).

 

Trần Tuấn Hoàng
7 tháng 5 2022 lúc 16:25

-Hoặc có thể c/m bằng phép biến đổi tương đương:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)ab.\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}.\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2017 lúc 7:22

Chọn D.

Ta có 

Vậy để  thì . Vì a và b là các số nguyên dương nên suy ra a = 5k, b = 3k với k nguyên dương. Do đó ab = 15k2.

+ 15k2 = 15 k2 = 1 k = 1 ab = 15.

+ 15k2 = 60 k2 = 4 k = 2 ab = 60.

+ 15k2 = 240 k2 = 16 k = 4 ab = 240.

Vậy cả ba đáp án đều đúng.

Phạm Trần Tuyết Ninh
Xem chi tiết
Phùng Minh Quân
15 tháng 12 2018 lúc 20:38

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) ( Svac-xơ, Cauchy các kiểu -,- ) 

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}}{2}=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\) ( đpcm ) 

... 

tth_new
3 tháng 1 2019 lúc 9:42

\(2VP=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)

\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VT\)

Từ đây,ta có: \(2VT\ge2VP\Rightarrow VT\ge VP^{\left(đpcm\right)}\)

Thanh Thảoo
Xem chi tiết
Nguyễn Văn Tuấn Anh
4 tháng 2 2020 lúc 10:25

https://olm.vn/hoi-dap/detail/232384263245.html

Khách vãng lai đã xóa
Nguyễn Thị Mát
4 tháng 2 2020 lúc 10:31

Áp dụng BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}\)

\(+\frac{ab}{4\left(b+c\right)}\)

Thiết lập tương tự và thu lại ta có :
\(P\)\(\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)

\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)

Vậy \(P_{max}=\frac{1}{4}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn Phương Thảo
4 tháng 2 2020 lúc 10:58

Do a+b+c=1 nên \(P=\frac{ab}{a+b+2c}+\frac{bc}{2a+b+c}+\frac{ac}{a+2b+c}\)

Áp dụng bất đẳng thức: \(\frac{1}{a}+\frac{1}{b}\le\frac{4}{a+b}\)hay \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\):

Ta có: \(\frac{ab}{a+b+2c_{ }}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự: \(\frac{bc}{2a+b+c}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)

\(\frac{ac}{a+2b+c}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

Do đó: P\(\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{b+a}+\frac{ac}{b+c}\right)\)

=\(\frac{1}{4}\left[\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)

=\(\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}.1=\frac{1}{4}\)

Dấu "=" xảy ra khi và chỉ khi a=b=c=1/3

Khách vãng lai đã xóa