-Áp dụng BĐT Caushy Schwarz cho các cặp số dương (1,1) ở tử và (a,b) ở mẫu ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)
-Dấu "=" xảy ra khi \(a=b\).
-Hoặc có thể c/m bằng phép biến đổi tương đương:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)ab.\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}.\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b\)