Giải phương trình: -x2 + 2 = \(\sqrt{2-x}\)
giải phương trình:
x2+(3-\(\sqrt{x^2+2}\))x=1+2\(\sqrt{x^2+2}\)
Giải phương trình x2 – x + 4= ( x- 1).\(\sqrt{x+2}\) + \(\sqrt{x^3+x^2-4x+6}\)
Giải phương trình : x2 +2( 2 + \(\sqrt{x-1}\) ) =5x
\(x^2+2\left(2+\sqrt{x-1}\right)=5x\)
\(\Leftrightarrow x^2+4+2\sqrt{x-1}-5x=0\)
\(\Leftrightarrow x^2-5x+2\sqrt{x-1}+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^2+2\left(2+\sqrt{x-1}\right)=5x\left(1\right)\)
Đk: \(x\ge1\)
\(\left(1\right)\Leftrightarrow x^2-5x+4+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left[\left(x-1\right)-2\sqrt{x-1}+1\right]=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2=0\)
\(\Leftrightarrow\left(x+\sqrt{x-1}-3\right)\left(x-\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x-1}-3=0\left(2\right)\\x-\sqrt{x-1}-1=0\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x-1\right)+\sqrt{x-1}-2=0\)
\(\Leftrightarrow\left(x-1\right)-\sqrt{x-1}+2\sqrt{x-1}-2=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-1\right)+2\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+2\right)=0\)
\(\Leftrightarrow\sqrt{x-1}-1=0\) (vì \(\sqrt{x-1}+2>0\))
\(\Leftrightarrow x=2\left(nhận\right)\)
\(\left(3\right)\Leftrightarrow\left(x-1\right)-\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\left(nhận\right)\)
Vậy phương trình (1) có 2 nghiệm là \(x=1\text{v}àx=2\)
Giải phương trình
a) \(\sqrt{4-2\sqrt{3}}\) x-16=0
b) 15-2\(\sqrt{15}\) x +x2=0
a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)
=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)
b: =>(x-căn 15)^2=0
=>x-căn 15=0
=>x=căn 15
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
giải phương trình :
(x2+2)\(\sqrt{x^2+x +1}+x^3-3x^2-5x+2=0\)
\(\Leftrightarrow\left(x^2+2\right)\sqrt{x^2+x+1}-2\left(x^2+2\right)+x^3-x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(\sqrt{x^2+x+1}-2\right)+\left(x-2\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2+2\right)\left(x^2+x-3\right)}{\sqrt{x^2+x+1}+2}+\left(x-2\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x^2+x-3\right)\left(\dfrac{x^2+2}{\sqrt{x^2+x+1}+2}+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-3=0\Rightarrow x=...\\x^2+2=\left(2-x\right)\left(\sqrt{x^2+x+1}+2\right)\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+2x-2=\left(2-x\right)\sqrt{x^2+x+1}\)
Đặt \(\sqrt{x^2+x+1}=t>0\Rightarrow x^2=t^2-x-1\)
\(\Rightarrow t^2+x-3=\left(2-x\right)t\)
\(\Leftrightarrow t^2+\left(x-2\right)t+x-3=0\)
\(\Leftrightarrow t^2-1+\left(x-2\right)\left(t+1\right)=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+x-3\right)=0\)
\(\Leftrightarrow t=3-x\)
\(\Leftrightarrow\sqrt{x^2+x+1}=3-x\) (\(x\le3\))
\(\Leftrightarrow x^2+x+1=x^2-6x+9\)
\(\Leftrightarrow x=\dfrac{8}{7}\)
Giải các bất phương trình sau:
a.(x+1)(-x2+3x-2)<0
b.\(\sqrt{x^2-5x+4}+2\sqrt{x+5}>2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
giải phương trình sau :
(x+2)\(\sqrt{\left(x-1\right)^2+1}\) =x2-x+1
giải phương trình: \(\sqrt{x^2-2x+5}\)=x2-2x-1
Đặt \(\sqrt{x^2-2x+5}=t>0\)
\(\Rightarrow x^2-2x=t^2-5\)
Phương trình trở thành:
\(t=t^2-5-1\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-2x+5}=3\)
\(\Rightarrow x^2-2x+5=9\)
\(\Rightarrow x^2-2x-4=0\)
\(\Rightarrow...\)
Giải phương trình: x2 - 2x + 4 - 2\(\sqrt{x^3-1}\) = 0