Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quang Huy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2023 lúc 16:50

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2019 lúc 7:23

Khi đó y' là hàm số bậc ba. Phương trình y'=0 có ít nhất một nghiệm đơn hoặc bội lẻ và đổi dấu  qua nghiệm đó. Do đó mệnh đề (*) sai.  Suy ra loại  m 2   -   3 m     +   2   ≠ 0

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 5 2019 lúc 16:02

Chọn B

Tập xác định của hàm số:

Ta có: .

.

 

nên hàm số nghịch biến trên khoảng .

Thuyy Duongg
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:23

a) Tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

Lấy \({x_1},{x_2} \in \left( {0; + \infty } \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( {0; + \infty } \right) \Rightarrow {x_1}{x_2} > 0\)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).

b) Lấy \({x_1},{x_2} \in \left( { - \infty ;0} \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( { - \infty ;0} \right) \Rightarrow {x_1}{x_2} > 0\)(Cùng dấu âm nên tích cũng âm)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).

Chan
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2021 lúc 19:32

Do \(m^2+2m+3=\left(m+1\right)^2+2>0\) ; \(\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2019 lúc 9:58

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2018 lúc 6:02

 

Bất phương trình này khó giải trực tiếp, do vậy ta sẽ chọn x thoả mãn 

TH1: Nếu 

Chọn đáp án C.

TH2: Nếu 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2018 lúc 18:19


Võ Tuấn Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2023 lúc 20:27

a: Để (d) là hàm số bậc nhất thì \(m^2+3m-4< >0\)

=>\(\left(m+4\right)\left(m-1\right)< >0\)

=>\(m\notin\left\{-4;1\right\}\)

b: Để (d) đồng biến thì \(m^2+3m-4>0\)

=>(m+4)(m-1)>0

=>m>1 hoặc m<-4

c: Để (d) nghịch biến thì m^2+3m-4<0

=>(m+4)(m-1)<0

=>-4<m<1