cho x1 và x2 là 2 nghiệm của phương trình x2-x-1=0
Tính giá trị của biểu thức P= (x1-x2)2
Cho hai phương trình x2+2022x+1=0 (1) và x2+2023x+1 (2).Gọi x1,x2 là nghiệm của phương trình (1) ; x3,x4 là nghiệm của phương trình (2).Giá trị của biểu thức P=(x1+x3)(x2+x3)(x1-x4)(x2-x4) là
A.4045 B.-1 C.1 D.0
Gọi x1, x2 là nghiệm của phương trình x^2+2009x+1=0,
x3,x4 là nghiệm của phương trình x^2+2010x+1=0.
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
cho phương trình x2-4mx+m2-5=0 . tính giá trị của biểu thức A=2(x1-x2)2 với x1,x2 là nghiệm của phương trình
Lời giải:
Vì $\Delta'=(-2m)^2-(m^2-5)=3m^2+5>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm thì:
$x_1+x_2=4m$
$x_1x_2=m^2-5$
Khi đó:
$A=2(x_1-x_2)^2=2[(x_1+x_2)^2-4x_1x_2]=2[(4m)^2-4(m^2-5)]=2(12m^2+20)$
$=24m^2+40$
Δ=(-4m)^2-4(m^2-5)
=16m^2-4m^2+20=12m^2+20>=0
=>Phương trình luôn có hai nghiệm
A=2[(x1+x2)^2-4x1x2]
=2[(4m)^2-4(m^2-5)]
=2[16m^2-4m^2+20]
=24m^2+40
Cho phương trình x^2-2x-5=0 có 2 nghiệm x1,x2. Không giải phương trình, hãy tính giá trị của các biểu thức : B=x1^2+x2^2 ; C=x1^5+x2^5
\(\hept{\begin{cases}x_1+x_2=2\\x_1.x_2=-5\end{cases}}\)
\(B=x_1^2+x_2^2=\left(x_2+x_2\right)^2-2x_1.x_2=2^2+2.5=14\)
Câu C phân tích tương tự
Cho phương trình: 5 x^2-2\sqrt{5}x+1 = 05x2−25x+1=0.
Điền số thích hợp vào ô trống:
Biệt thức \Delta=Δ=
×
.
Nghiệm x=x=
1) Cho phương trình 5x^2+3x-1=0 có hai nghiệm x1,x2. Không giải phương trình, hãy tính giá trị của biểu thức A=\(\left(3x_1+2x_2\right)\left(3x_2+x_1\right)\)
2) Cho phương trình 7x^2-2x-3=0 có hai nghiệm là x1,x2 tính giá trị của biểu thức
M=\(\dfrac{7x_1^2-2x_1}{3}+\dfrac{3}{7x_2^2-2x_2}\)
`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`
Có: `A=(3x_1+2x_2)(3x_2+x_1)`
`A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`
`A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`
Vậy `A=-13/25`
____________________________________________________
`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`
Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`
`M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`
`M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`
`M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`
`M=6/[x_2(7x_2-2)]` `(1)`
Có: `x_1+x_2=2/7=>x_1=2/7-x_2`
Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`
`<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`
`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`
`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`
Vậy `M=2`
Bài 3: Cho phương trình 3x2 –2x–2=0 có hai nghiệm x1 , x2 . Hãy tính giá trị của biểu thức: D=x1/x2-1 + x2/x1-1
Cho phương trình x^2-2*(m-1)+2 *m-5=0 , với m là tham số Gọi x1 x2 là 2 nghiệm của phương trình trên , tìm tất cả cá giá trị nghuyên dương của m để biểu thức B= (x1/x2)^2+(x2/x1)^2 nhận giá trị nguyên
Δ=(2m-2)^2-4(2m-5)
=4m^2-8m+4-8m+20
=4m^2-16m+24
=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)
\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)
\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)
\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)
\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)
\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)
\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)
Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(m\in\left\{3;2;4;1;7\right\}\)
CHo pt x-4x-3=0 có 2 nghiệm phân biệt x1,x2 không giải phương trình hãy tính giá trị của biểu thức A=\(\dfrac{x1^2}{x2}+\dfrac{x2^2}{x1}\)
\(x^2 - 4x - 3 = 0\) có 1.(-3) < 0
=> Phương trình có hai nghiệm phân biệt
Áp dụng hệ thức Vi-et có \(x_1 + x_2 = 4\) \(; x_1x_2 = -3\)
Mà \(A = \dfrac{x_1^2}{x_2} + \dfrac{x_2^2}{x_1}\)
\(= \dfrac{x_1^3 + x_2^3}{x_1x_2}\)
\(= \dfrac{(x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)}{x_1x_2}\)
\(=\dfrac{(x_1+x_2)[(x_1 +x_2)^2 - 3x_1x_2]}{x_1x_2}\)
\(=\dfrac{4.[4^2 - 3.(-3)]}{-3}\)
\(= \dfrac{-100}{3}\)
cho phương trình: x^2-(2m+3)x+m=0. Gọi x1,x2 là 2 nghiệm của phương trình đã cho. Tìm giá trị của m để biểu thức x1^2+x2^2 có giá trị nhỏ nhất
PT có 2 nghiệm `x_1,x_2`
`<=>\Delta>0`
`<=>(2m+3)^2-4m>0`
`<=>4m^2+12m+9-4m>0`
`<=>4m^2+8m+9>0``
`<=>(2m+2)^2+5>0`(luôn đúng)
Áp dụng vi-ét:$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}$
$x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1.x_2\\=(2m+3)^2-2m\\=4m^2+12m+9-2m\\=4m^2+10m+9\\=(2m+\dfrac52)^2+\dfrac{11}{4} \geq \dfrac{11}{4}$
Dấu "=" `<=>2m=-5/2<=>m=-5/4`
Tìm giá trị của m để phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có hai nghiệm x 1 ; x 2 và biểu thức A = ( x 1 − x 2 ) 2 đạt giá trị nhỏ nhất
A. m = 1
B. m = 0
C. m = 2
D. m = 3
Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1 ≠ 0 và
∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8
Xét
A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33
Dấu “=” xảy ra khi m = 0
Vậy m = 0 là giá trị cần tìm
Đáp án: B