Tìm n \(\in\)Z để phân số sau có giá trị là 1 số nguyên :
\(\dfrac{2n-3}{n+4}\)
Câu 11: Tìm n ∈ Z để phân số \(\dfrac{2n-3}{n+1}\) có giá trị là số nguyên.
Cho phân số A= \(\dfrac{2n+3}{4n+1}\) ( \(n\in Z\) )
a) Tìm n để A= \(\dfrac{13}{21}\)
b) Tìm tất cả các giá trị của n để A có giá trị là phân số tối giản
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
Cho phân số A=\(\dfrac{n+1}{n-3}\) (n\(\in\)Z)
a, Tìm các giá trị của n để A là phân số.
b, Tìm n để A có giá trị nguyên.
a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3
b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)
\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
\(\Leftrightarrow4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
1.a)Chứng tỏ rằng:\(\dfrac{2n+5}{n+3}\)(nϵN) là phân số tối giản.
b)Tìm các giá trị nguyên của n để phân số B=\(\dfrac{2n+5}{n+3}\) có giá trị là số nguyên.
2.Ở lớp 6A,số học sinh giỏi học kì I bằng \(\dfrac{3}{7}\) số còn lại.Cuối năm có thêm 4 học sinh đạt loai giỏi bằng \(\dfrac{2}{3}\) số còn lại.Tính số học sinh của lớp 6A ?
1. a) Gọi a là ƯCLN của 2n+5 và n+3.
- Ta có: (n+3)⋮a
=>(2n+6)⋮a
Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a
=>1⋮a
=>a=1 hay a=-1.
- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.
b) -Để phân số B có giá trị là số nguyên thì:
\(\left(2n+5\right)⋮\left(n+3\right)\)
=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)
=>\(-1⋮\left(n+3\right)\).
=>\(n+3\inƯ\left(-1\right)\).
=>\(n+3=1\) hay \(n+3=-1\).
=>\(n=-2\) (loại) hay \(n=-4\) (loại).
- Vậy n∈∅.
1. a) Gọi `(2n +5 ; n + 3 ) = d`
`=> {(2n+5 vdots d),(n+3 vdots d):}`
`=> {(2n+5 vdots d),(2(n+3) vdots d):}`
`=> {(2n+5 vdots d),(2n+6 vdots d):}`
Do đó `(2n+6) - (2n+5) vdots d`
`=> 1 vdots d`
`=> d = +-1`
Vậy `(2n+5)/(n+3)` là phân số tối giản
b) `B = (2n+5)/(n+3)` ( `n ne -3`)
`B = [2(n+3) -1]/(n+3)`
`B= [2(n+3)]/(n+3) - 1/(n+3)`
`B= 2 - 1/(n+3)`
Để B nguyên thì `1/(n+3)` có giá trị nguyên
`=> 1 vdots n+3`
`=> n+3 in Ư(1) = { 1 ; -1}`
+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)
+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)
Vậy `n in { -2; -4}` thì `B` có giá trị nguyên
2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)
Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)
Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)
Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)` (học sinh)
Vì số học sinh của lớp `6A` không đổi nên ta có :
`7/3x + x = 3/2 (x+4) + x+4`
`=> 10/3 x = 3/2 x + 6 + x + 4`
`=> 10/3 x - 3/2 x -x = 10 `
`=> 5/6x = 10`
`=> x=12` (thỏa mãn điều kiện)
`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh
`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh
`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)
Vậy lớp `6A` có `40` học sinh
Tìm các giá trị nguyên của n để phân số A=\(\dfrac{2n+2021}{n+4}\)
có giá trị là số nguyên
tìm n thuộc z để phân số sau đây có giá trị nguyên
A= 4-2n/n+2
B=2n-1/3-n
Tìm số nguyên n để các phân số sau có giá trị là số nguyên lớn nhất.
B=\(\dfrac{6n+5}{2n-1}\)
Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN
⇒2n-1 là số nguyên dương nhỏ nhất
⇒2n-1=1
⇒2n=2
⇒n=1
Tìm n\(\in\) Z để tích hai phân số \(\dfrac{19}{n-1}\)với (n\(\ne1\)) và \(\dfrac{n}{9}\)có giá trị là số nguyên
Để tích 2 PS là số nguyên thì 19⋮n-1 và n⋮9
⇒n-1∈Ư(19),9∈B(n)
⇒Ư(19)={\(\pm\)1;\(\pm\)19}
⇒n-1=1 ⇒n-1=19
⇒n-1=-1 ⇒n-1=-19
⇒n∈{2;20;0;-18} nhưng 9∈B(n)
⇒n∈{0;-18}
Giải:
Ta gọi tích hai số là A
Ta có:
\(A=\dfrac{19}{n-1}.\dfrac{n}{9}=\dfrac{19.n}{\left(n-1\right).9}\) (với n ≠ 1)
Vì \(ƯCLN\left(19;9\right)=1\) \(;ƯCLN\left(n;n-1\right)=1\)
\(\Rightarrow A\in Z\)
\(\Rightarrow n\in B\left(9\right)\) và \(\left(n-1\right)\inƯ\left(19\right)\)
Ta có bảng giá trị:
n-1 | 1 | -1 | 19 | -19 |
n | 2 | 0 | 20 | -18 |
\(\Rightarrow n\in\left\{-18;0\right\}\) (t/m)
Vậy \(n\in\left\{-18;0\right\}\)
tìm số nguyên n để các Phân số sau có giá trị là số nguyên:
-3 phần n-1 4 phần 3n+1 n+3 phần 2n-1
a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)
hay \(n\in\left\{0;1\right\}\)
c: Để C nguyên thì \(n+3⋮2n-1\)
\(\Leftrightarrow2n+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
Tìm các số nguyên n để biểu thức sau có giá trị là số nguyên:
A = \(\dfrac{2n-1}{3-n}\)
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)