Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Iron Fe
Xem chi tiết
HT.Phong (9A5)
17 tháng 9 2023 lúc 9:37

a) Ta có: 

\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:

\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)

b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)

\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)

\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)

\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)

\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)

\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)

Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)

Dấu "=" xảy ra khi:

\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)

\(\Leftrightarrow x+\dfrac{1}{12}=0\)

\(\Leftrightarrow x=-\dfrac{1}{12}\)

Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)

Qasalt
Xem chi tiết
Trần Đình Hoàng Quân
Xem chi tiết
Akai Haruma
20 tháng 6 2023 lúc 11:40

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

Akai Haruma
20 tháng 6 2023 lúc 11:45

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

Akai Haruma
20 tháng 6 2023 lúc 11:47

$E=-|x^2-1|-(x-1)^2-y^2-2020$

Ta thấy:

$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$

Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$

$\Leftrightarrow x=1; y=0$

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Vũ Ngọc Thảo Nguyên
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Huyền Trang
5 tháng 2 2021 lúc 15:15

undefined

Lê Thu Hiền
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

Vy Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:23

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

Arceus Official
Xem chi tiết
alibaba nguyễn
15 tháng 6 2017 lúc 13:42

Bài này tìm min chứ max có đâu mà tìm

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(=8x^4-64x^3+192x^2-256x+136\)

\(=\left(8x^4-64x^3+128x^2\right)+\left(64x^2-256x\right)+136\)

\(=8\left(x^2-4x\right)^2+64\left(x^2-4x\right)+136\)

\(=8\left(x-2\right)^4+8\ge8\)

Dấu = xảy ra khi \(x=2\)

Big City Boy
Xem chi tiết