Lời giải:
\(A=(3x-x^2)(x^2+5x+4)\)
\(-A=(x^2-3x)(x^2+5x+4)=x(x-3)(x+1)(x+4)\)
\(-A=[x(x+1)][(x-3)(x+4)]\)
\(-A=(x^2+x)(x^2+x-12)\)
\(-A=(x^2+x)^2-12(x^2+x)=(x^2+x-6)^2-36\)
Ta có:
\(x^2+x-6=0\) có nghiệm nên \((x^2+x-6)^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow -A\geq 0-36=-36\)
\(\Rightarrow A\leq 36\) hay \(A_{\max}=36\)
Dấu bằng xảy ra khi \(x^2+x-6=0\leftrightarrow x=2,x=-3\)