phân tích đa thúc thành nhân tử P=(x-y)3+(y-z)3+(z-x)3
phân tích đa thúc thành nhân tử P=(x-y)3+(y-z)3+(z-x)3
Phân tích đa thức thành nhân tử : (x + y + z)2 + (x + y – z)2 – 4z2
\(\left(x+y+z\right)^2+\left(x+y-z\right)^2-4z^2=\left(x+y+z\right)^2+\left(x+y-z-2z\right)\left(x+y-z+2z\right)=\left(x+y+z\right)^2+\left(x+y-3z\right)\left(x+y+z\right)=\left(x+y+z\right)\left(x+y+z+x+y-3z\right)=\left(x+y+z\right)\left(2x+2y-2z\right)=2\left(x+y+z\right)\left(x+y-z\right)\)
Ta có:
(x + y + z)2 + (x + y – z)2 – 4z2
\(=\left(x+y-z\right)^2+\left(x+y-z\right)\left(x+y+3z\right)\)
\(=\left(x+y-z\right)\left(x+y+3z+x+y-z\right)\)
\(=2\left(x+y-z\right)\left(x+y+z\right)\)\(\left(x+y+z\right)^2+\left(x+y-z\right)^2-4z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2xz+x^2+y^2+z^2+2xy-2xz-2yz-4z^2\)
\(=2x^2+2y^2-2z^2+4xy\)
\(=2\left(x^2+2xy+y^2-z^2\right)\)
\(=2\left(x+y-z\right)\left(x+y+z\right)\)
Phân tích đa thức thành nhân tử :
A = –x – z(x – y) + y
\(A=-x-z\left(x-y\right)+y=-x-xz+zy+y=-x\left(1+z\right)+y\left(1+z\right)=\left(1+z\right)\left(y-x\right)\)
A = -x - z(x - y) + y
A = -x - zx + zy + y
A = -(-x - zx + zy + y)
A = x + zx - zy - y
A = x + zx - y - zy
A = x(1 + z) - y(1 + z)
A = (x - y)(1 + z)
phân tích đa thức thành nhân tử
y^2.(y+z)+x.z.(z-x)-x.y.(x+y)
phân tích đa thúc thành nhân tử
(x^2+x+4)^3+8x(x^2+x+4)+15x^2
a, Phân tích đa thức sau thành nhân tử: x3 + y3 + z3 -3xyz
b,cho x + y + z = 0 CMR: x3 + y3 + z3 = 3xyz
a,Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
b, Từ:
x + y + z = 0
=> x + y = -z
<=> (x + y)^3 = (-z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2
<=> x^3 + y^3 + z^3 = -3xy(x+y)
<=> x^3 + y^3 + z^3 = -3xy(-z)
<=> x^3 + y^3 + z^3 = 3xyz
Phân tích đa thức thành nhan tử :
\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
bạn thu gom 2 đa thức đầu tiên thành 1 nhóm và 2 đa thức sau thành 1 nhóm . sau đó dùng hđt rồi đem chung
nên nhớ 8=23
Phân tích đa thức sau thành nhân tử :
4(x^2y^2 + z^2t^2 + 2xyzt) – (x^2 + y^2 – z^2 – t^2)^2
\(4\left(x^2y^2+z^2t^2+2xyzt\right)-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left[2\left(xy+zt\right)\right]^2-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left(2xy+2zt\right)^2-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left(2xy+2zt-x^2-y^2+z^2+t^2\right)\left(2xy+2zt+x^2+y^2-z^2-t^2\right)^2\)
Ta có: \(4\left(x^2y^2+2xyzt+z^2t^2\right)-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left(2xy+2tz\right)^2-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left(2xy+2tz-x^2-y^2+z^2+t^2\right)\left(2xy+2tz+x^2+y^2-z^2-t^2\right)\)
\(=\left[-\left(x^2-2xy+y^2\right)+\left(z^2+2tz+t^2\right)\right]\left[\left(x^2+2xy+y^2\right)-\left(t^2-2tz+z^2\right)\right]\)
\(=\left(z+t-x+y\right)\left(z+t+x-y\right)\left(x+y-t+z\right)\left(x+y+t-z\right)\)
Phân tích đa thức thành nhân tử : 4(x^2y^2 + z^2t^2 + 2xyzt) - (x^2 + y^2 - z^2 - t^2)^2
\(4(x^2y^2+z^2t^2+2xyzt)-(x^2+y^2-z^2-t^2)^2\)
\(=[2(xy+zt]^2-(x^2+y^2-z^2-t^2)^2\)
\(=(2xy+2zt)^2-(x^2+y^2-z^2-t^2)^2\)
\(=(2xy+2zt-x^2-y^2+z^2+t^2)(2xy+2zt+x^2+y^2-z^2-t^2)^2\)